TOPOLOGICAL PROPERTIES OF TAIMANOV SEMIGROUPS

OLEG GUTIK

Faculty of Mathematics, National University of Lviv, Universytetska 1, Lviv, 79000, Ukraine

A semigroup T is called Taimanov if T contains two distinct points $0, \infty$ such that $xy = \infty$ for any distinct elements $x, y \in T \setminus \{0, \infty\}$ and $xy = 0$ in all other cases. We prove that any Taimanov semigroup T has the following topological properties: (i) each T_1-topology with continuous shifts on T is discrete; (ii) T is closed in each T_1-topological semigroup containing T as a subsemigroup; (iii) every non-isomorphic homomorphic image Z of T is a zero-semigroup and hence Z is a topological semigroup in any topology on Z.

We shall follow the terminology of [5, 8, 10, 20].

The problem of non-discrete (Hausdorff) topologization of infinite groups was posed by Markov [17]. This problem was resolved by Ol’shanskiy [19] who constructed an infinite countable group G admitting no non-discrete Hausdorff group topologies. On the other hand, Zelenyuk [23] proved that each group G admits a non-discrete shift-continuous Hausdorff topology τ with continuous inversion $G \to G, x \mapsto x^{-1}$. In [1, 2.10] it was observed that Ol’shanskiy construction can be modified to produce for every non-zero $m \in \mathbb{Z} \setminus \{-2^n, 2^n : n \in \omega\}$ a countable infinite group G_m admitting

2010 Mathematics Subject Classification: 22A15, 22A25, 54A10, 54D40, 54H10

Key words and phrases: Taimanov semigroup, semitopological semigroup, topological semigroup, zero-semigroup.

E-mail: o_gutik@franko.lviv.ua, ovgutik@yahoo.com
no non-discrete shift-continuous topology with continuous m-th power map $G_m \to G_m$, $x \mapsto x^m$.

Studying the topologizability problem in the class of inverse semigroups, Eberhart and Selden [9] proved that every Hausdorff semigroup topology on the bicyclic semigroup $\mathcal{B}(p, q)$ is discrete. This result was generalized by Bertman and West [4] who proved that every Hausdorff shift-continuous topology on $\mathcal{B}(p, q)$ is discrete. In [2, 3, 6, 7, 11, 12, 13, 14, 15, 16, 18] these topologizability results were extended to some generalizations of the bicyclic semigroup.

Studying the topologizability problem in the class of commutative semigroups [22], Taimanov in [21] constructed a commutative semigroup \mathfrak{A}_κ of arbitrarily large cardinality κ, which admits no non-discrete Hausdorff semigroup topology, but any non-isomorphic homomorphic image Z of T is a zero-semigroup and hence is a topological semigroup in any topology on Z. We recall that a semigroup Z is a zero-semigroup if the set $\{xy : x, y \in X\}$ is a singleton $\{z\}$. In this case the element z is the zero-element of the semigroup S, i.e., a (unique) element $z \in S$ such that $xz = z = zx$ for all $x \in S$. In this paper we improve the mentioned Taimanov’s result proving that the Taimanov semigroup \mathfrak{A}_κ admits no non-discrete shift-continuous T_1-topologies and is closed in any T_1-topological semigroup containing \mathfrak{A}_κ as a subsemigroup. First we give an abstract definition of a Taimanov semigroup.

Definition 1. A semigroup T is called Taimanov if it contains two distinct elements $0_T, \infty_T$ such that for any $x, y \in T$

$$x \cdot y = \begin{cases} \infty_T & \text{if } x \neq y \text{ and } x, y \in T \setminus \{0_T, \infty_T\}; \\ 0_T & \text{if } x = y \text{ or } \{x, y\} \cap \{0_T, \infty_T\} \neq \emptyset. \end{cases}$$

The elements $0_T, \infty_T$ are uniquely determined by the algebraic structure of T: 0_T is a (unique) zero-element of T, and ∞_T is the unique element of the set $TT \setminus \{0_T\}$.

It follows that each Taimanov semigroup T is commutative. Concrete examples of Taimanov semigroups can be constructed as follows.

Example 1. For any non-zero cardinal κ the set $\kappa \cup \{\kappa\}$ endowed with the commutative semigroup operation defined by

$$xy = \begin{cases} \kappa & \text{if } x \neq y \text{ and } x, y \in T \setminus \{0, \kappa\}; \\ 0 & \text{if } x = y \text{ or } \{x, y\} \cap \{0, \kappa\} \neq \emptyset. \end{cases}$$

is a Taimanov semigroup of cardinality $1 + \kappa$. Here we identify the cardinal κ with the set $[0, \kappa)$ of ordinals, smaller than κ.

Proposition 1. Two Taimanov semigroups are isomorphic if and only if they have the same cardinality.

Proof. Given two Taimanov semigroups T, S of the same cardinality, observe that any bijective map $f : T \to S$ with $f(0_T) = 0_S$ and $f(\infty_T) = \infty_S$ is an algebraic isomorphism of T onto S. \qed
In this paper we show that any Taimanov semigroup T has the following topological properties:

1. every shift-continuous T_1-topology on T is discrete;
2. T is closed in each T_1-topological semigroup containing T as a subsemigroup;
3. every non-isomorphic homomorphic image Z of T is a zero-semigroup and hence any topology on Z turns it into a topological semigroup.

The first statement generalizes the original result of Taimanov [21] and is proved in the following proposition.

Proposition 2. Every shift-continuous T_1-topology τ on any Taimanov semigroup T is discrete.

Proof. The statement is trivial if the semigroup T is finite. So, assume that T is infinite. The topology τ satisfies the separation axiom T_1 and hence contains an open set $U \subset X$ such that $0_T \notin U$ and $\infty_T \notin U$.

First we prove that the points 0_T and ∞_T are isolated in T. Chose any point $x \in T \setminus \{0_T, \infty_T\}$ and observe that $x \cdot 0_T = x \cdot \infty_T = 0_T \in U$. By the shift-continuity of the topology τ, there exist neighborhoods $U_0 \in \tau$ of 0_T and $U_\infty \in \tau$ of ∞_T such that $\{x \cdot U_0\} \cup \{x \cdot U_\infty\} \subset U$. We claim that $U_0 \setminus \{x, \infty_T\} = \{0_T\}$ and $U_\infty \setminus \{x, 0_T\} = \{\infty_T\}$.

In the opposite case we could find a point $y \in (U_0 \cup U_\infty) \setminus \{x, 0_T, \infty_T\}$ and conclude that $\infty_T = xy \in (U_0 \cup U_\infty) \subset U \subset T \setminus \{\infty_T\}$, which is a desired contradiction showing that the points 0_T and ∞_T are isolated in T.

To show that each point $x \in T \setminus \{0_T, \infty_T\}$ is isolated in the topology τ, observe that $xx = 0_T \in T \setminus \{\infty_T\} \in \tau$ and use the shift-continuity of the topology τ to find a neighborhood $U_x \in \tau$ of x such that $xU_x \subset T \setminus \{\infty_T\}$. Assuming that $U_x \neq \{x\}$ we can choose any point $y \in U_x \setminus \{x\}$ and conclude that $\infty_T = xy \in T \setminus \{\infty_T\}$, which is a contradiction showing that $U_x = \{x\}$ and hence the point x is isolated in the topology τ.

The following example shows that any infinite Taimanov semigroup admits a non-discrete semigroup T_0-topology.

Example 2. For any infinite Taimanov semigroup T the family of subsets

$$\tau := \{U \subset T : \text{if } 0_T \in U, \text{ then } \infty_T \in U \text{ and } |T \setminus U| < \omega\}$$

is a T_0-topology turning T into a topological semigroup.

A semitopological semigroup S will be called *square-topological* if the map $S \to S$, $x \mapsto x^2$, is continuous. It is clear that each topological semigroup is square-topological.

Theorem 1. A Taimanov semigroup T is closed in any square-topological semigroup S containing T as a subsemigroup and satisfying the separation axiom T_1.

Proof. Assuming that T is not closed in S, choose any point $s \in \overline{T} \setminus T$. We claim that $sx = \infty_T$ for any $x \in T \setminus \{0_T, \infty_T\}$. Assuming that $sx \neq \infty_T$ and using the shift-continuity of the T_1-topology of S, we can find a neighborhood $U_s \subset S$ of s such that
\(U_\tau \cdot x \subset S \setminus \{ \infty \} \). Since \(s \) is an accumulation point of the set \(T \) in \(S \), there exists a point \(y \in U_s \setminus \{ x, 0_\tau, \infty_T \} \). For this point \(y \) we get \(\infty_T = yx \in U_\tau x \subset S \setminus \{ \infty_T \} \), which is a contradiction showing that \(ss = \infty_T \) for any \(x \in T \setminus \{ 0_T, \infty_T \} \). Next, we show that \(ss = \infty_T \). Assuming that \(ss \neq \infty_T \), we can use the shift-continuity of the \(T_1 \)-topology of \(S \) to find a neighborhood \(V_s \subset S \) of \(s \) such that \(sV_s \subset S \setminus \{ \infty_T \} \). Since \(s \) is an accumulation point of the set \(T \) in \(S \), there exists a point \(x \in V_s \cap T \setminus \{ 0_T, \infty_T \} \). For this point \(x \), we get \(\infty_T = sx \in sV_s \subset S \setminus \{ \infty_T \} \), which is a contradiction showing that \(ss = \infty_T \). By the separation axiom \(T_1 \), the set \(S \setminus \{ 0_T \} \) is an open neighborhood of \(\infty_T \) in \(S \). The continuity of the map \(S \to S, x \mapsto x^2 \), yields a neighborhood \(W_s \subset S \) such that \(x^2 \in S \setminus \{ 0_T \} \) for any \(x \in W_s \). Since \(s \) is an accumulation point of the set \(T \) in \(S \), there exists a point \(x \in W_s \cap T \setminus \{ 0_T, \infty_T \} \). For this point \(x \) we get \(0_T = xx \in S \setminus \{ 0_T \} \), which is a desired contradiction showing that the set \(T \) is closed in \(S \). \(\square \)

The following example shows that any infinite Taimanov semigroup admits a (non-closed) embedding into a compact Hausdorff semitopological semigroup and also shows that the continuity of the map \(S \to S, x \mapsto x^2 \), in Theorem 1 is essential and cannot be replaced by the continuity of the map \(S \to S, x \mapsto x^m \), for some \(m \geq 3 \).

Example 3. Let \(T \) be a Taimanov semigroup and \(X \) be any \(T_1 \)-topological space containing \(T \) as a non-closed dense discrete subspace. Extend the semigroup operation of \(T \) to a binary operation of \(X \) defined by the formula:

\[
xy = \begin{cases}
0_T & \text{if } x = y \in T \text{ or } \{ x, y \} \cap \{ 0_T, \infty_T \} \neq \emptyset; \\
\infty_T & \text{otherwise.}
\end{cases}
\]

Since \((xy)z = 0_T = x(0_T)\) for any \(x, y, z \in X \) the extended operation is associative and turns \(X \) into a commutative semigroup containing \(T \) as a subsemigroup. Observe that for \(a \in \{ 0_T, \infty_T \} \) the shift \(l_a = r_a : X \to X, x \mapsto xa = 0_T \), is constant and hence continuous. For any \(a \in T \setminus \{ 0_T, \infty_T \} \) the shift \(l_a = r_a : X \to X, x \mapsto xa = ax \), is almost constant in the sense that \(l_a^{-1}(\infty_T) = X \setminus \{ a, 0_T, \infty_T \} \) and hence is continuous (as the set \(\{ a, 0_T, \infty_T \} \) is closed and open in \(X \)). For any \(a \in X \setminus T \) the shift \(l_a = r_a : X \to X, x \mapsto xa = ax \), is almost constant in the sense that \(l_a^{-1}(\infty_T) = X \setminus \{ 0_T, \infty_T \} \) and hence is continuous. This shows that \(X \) is a semitopological commutative semigroup containing \(T \) as a non-closed dense subsemigroup. Observe also that for every \(m \geq 3 \) the map \(X^m \to X, (x_1, \ldots, x_m) \mapsto x_1 \cdots x_m = 0_T \), is constant and hence continuous. Then the map \(X \to X, x \mapsto x^m \), is continuous as well.

Example 4. For any topological zero-semigroup \(Z \) with zero \(0_Z \) and any Taimanov semigroup \(T \) endowed with the discrete topology, any map \(h : T \to Z \) with \(h(0_T) = h(\infty_T) = 0_Z \) is a continuous semigroup homomorphism. Hence there exist many topological (zero-)semigroups containing continuous homomorphic images of Taimanov semigroups as non-closed subsemigroups.

Proposition 3. Any non-isomorphic homomorphic image \(S \) of a Taimanov semigroup \(T \) is a zero-semigroup.
Proof. Fix a non-injective surjective homomorphism $h : T \to S$. If $f(0_T) = f(\infty_T)$, then $SS = f(T) \cdot f(T) = f(TT) = f([0_T, \infty_T]) = \{f(0_T)\}$, which means that S is a zero-semigroup. So, assume that $f(0_T) \neq f(\infty_T)$. Since f is not injective, there exist two distinct points $a, b \in T$ with $f(a) = f(b)$. Since $f(0_T) \neq f(\infty_T)$, one of the points a, b, say a, belongs to $T \setminus \{0_T, \infty_T\}$. If $b \notin \{0_T, \infty_T\}$, then $ab = \infty_T$ and $aa = 0_T$ and hence $f(\infty_T) = f(ab) = f(a)f(b) = f(a)f(a) = f(aa) = f(0_T)$, which contradicts our assumption. This contradiction shows that $b \in \{0_T, \infty_T\}$ and hence $bc = 0_T$ for any $c \in T$.

If $|T| \geq 4$, then we can find a point $c \in T \setminus \{a, 0_T, \infty_T\}$ and conclude that $f(\infty_T) = f(ac) = f(a)f(c) = f(b)f(c) = f(bc) = f(0_T)$, which contradicts our assumption. So, $|T| \leq 3$ and hence $T = \{a, 0_T, \infty_T\}$ and $S = f(T) = \{f(a), f(0_T), f(\infty_T)\} = \{f(b), f(0_T), f(\infty_T)\} = \{f(0_T), f(\infty_T)\}$. Then $SS = f(\{xy : x, y \in \{0_T, \infty_T\}\}) = \{f(0_T)\}$, which means that S is a zero-semigroup.

Since the semigroup operation $Z \times Z \to \{0_Z\} \subset Z$ of any zero-semigroup Z is constant and hence is continuous with respect to any topology on X, Proposition 3 implies the following corollary.

Corollary 1. Every non-isomorphic homomorphic image S of a Taimanov semigroup is a topological semigroup with respect to any topology on S.

We call that a semigroup S is **algebraically complete** in a class \mathcal{S} of semitopological semigroups if S is a closed subsemigroup in each semitopological semigroup $T \in \mathcal{S}$ containing S as a subsemigroup. Theorem 1 implies the following

Corollary 2. Each Taimanov semigroup T is algebraically complete in the class of square-topological semigroups satisfying the separation axiom T_1. In particular, T is algebraically complete in the class of T_1-topological semigroups.

Remark 1. Corollary 1 implies that for any Taimanov semigroup T and any non-isomorphic surjective homomorphism $h : T \to S$ with the infinite image $S = h(T)$ the semigroup S is a dense proper subsemigroup of some (compact) Hausdorff topological zero-semigroup.

Acknowledgements. We acknowledge Taras Banakh and the referee for useful important comments and suggestions.
REFERENCES