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A semigroup T is called Taimanov if T contains two distinct points 0, co such that xy = oo
for any distinct elements x,y € T \ {0,00} and xy = 0 in all other cases. We prove that
any Taimanov semigroup 7 has the following topological properties: (i) each 7 -topology with
continuous shifts on T is discrete; (ii) 7 is closed in each T7-topological semigroup containing 7
as a subsemigroup; (iii) every non-isomorphic homomorphic image Z of T is a zero-semigroup
and hence Z is a topological semigroup in any topology on Z.

O. I'ytik. Tonoaoziuni 8aacmusocmi nanieepyn Taiimanoaa I/ Mart. BicH. Hayk. ToB. iMm. llleBuen-
ka. — 2016. — T.13. — C. 29-34.

Hamisrpyna T HasuBaeTbest Taiimanogoro, SIKIIO BOHA MICTUTB JiBa Pi3Hi exemeHTH 0, 00 Taki,
MO Xy = 0O yIsl JOBUIbHUX pi3HHUX TOUoK X,y € T \ {0,00} i xy = 00 y BCiX iHIMX BUMAA-
kax. [loBeneHo, mo goBijbHa HamiBrpyna TafimanoBa 7' Mae Taki TOIMOJIOTIUHI BIacTUBOCTI: (i)
KOXHa 71 -TOIOJIOTisI 3 HeMepepBHUMHU 3cyBamu Ha T € IUCKpeTHOMW; (ii) 7 3aMKHEeHa B IOBiJIBHIN
T1-TonoJoriuHiN HamiBrpyIi, MO MIiCTUTh 1 sIK MigHamiBrpymny; (iii) KoxeH Hei3oMOpgHUI roMo-
MopdHUIt 06pa3 Z HaniBrpynu 7' € HaniBrpymolo 3 HyJIbOBUM MHOKEHHSIM 1, OTKE € TONOJIOTTYHOI0
HAIiBrpymno B JOBLJIBHIM TOMOJOTIT Ha Z .

We shall follow the terminology of [5, 8, 10, 20].

The problem of non-discrete (Hausdorff) topologization of infinite groups was posed
by Markov [17]. This problem was resolved by Ol’shanskiy [19] who constructed an
infinite countable group G admitting no non-discrete Hausdorff group topologies. On
the other hand, Zelenyuk [23] proved that each group G admits a non-discrete shift-
continuous Hausdorff topology t with continuous inversion G — G, x — x~ . In
[1, 2.10] it was observed that Ol’shanskiy construction can be modified to produce for

every non-zero m € 7 \ {—2",2" : n € w} a countable infinite group G,, admitting
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no non-discrete shift-continuous topology with continuous m-th power map G, — G,
X x™,

Studying the topologizability problem in the class of inverse semigroups, Eber-
hart and Selden [9] proved that every Hausdorff semigroup topology on the bicyclic
semigroup % (p, q) is discrete. This result was generalized by Bertman and West [4]
who proved that every Hausdorff shift-continuous topology on €(p, q) is discrete. In
[2,3,6,7, 11, 12, 13, 14, 15, 16, 18] these topologizability results were extended to some
generalizations of the bicyclic semigroup.

Studying the topologizability problem in the class of commutative semigroups [22],
Taimanov in [21] constructed a commutative semigroup 2{, of arbitrarily large cardi-
nality x, which admits no non-discrete Hausdorff semigroup topology, but any non-
isomorphic homomorphic image Z of T is a zero-semigroup and hence is a topological
semigroup in any topology on Z. We recall that a semigroup Z is a zero-semigroup if
the set SS = {xy : x,y € X} is a singleton {z}. In this case the element z is the
zero-element of the semigroup S, i.e., a (unique) element z € S such that xz = z = zx
for al x € §S. In this paper we improve the mentioned Taimanov’s result proving that the
Taimanov semigroup 2, admits no non-discrete shift-continuous 77-topologies and is
closed in any 77-topological semigroup containing 2l as a subsemigroup. First we give
an abstract definition of a Taimanov semigroup.

Definition 1. A semigroup 7T is called Taimanov if it contains two distinct elements
O7,ocor suchthatforany x,y € T

oor ifx#yandx,y e T \{0r,ocor};

X-y=
YT lor ifx = yor{x,y} N{0r,oc0r} # @.

The elements O7, cor are uniquely determined by the algebraic structure of 7: O is a
(unique) zero-element of 7', and cor is the unique element of the set 7T \ {07}.

It follows that each Taimanov semigroup 7" is commutative. Concrete examples of
Taimanov semigroups can be constructed as follows.

Example 1. For any non-zero cardinal « the set k U {«} endowed with the commutative
semigroup operation defined by

k ifx#yandx,y € T \{0,«};

Xy = .
0 ifx=yor{x,y}N{0,x} # 2.

is a Taimanov semigroup of cardinality 1 4 «. Here we identify the cardinal x with the
set [0, k) of ordinals, smaller than «.

Proposition 1. Two Taimanov semigroups are isomorphic if and only if they have the
same cardinality.

Proof. Given two Taimanov semigroups 7, S of the same cardinality, observe that any
bijective map f : T — S with f(07) = Og and f(cor) = oog is an algebraic
isomorphism of 7" onto S. O
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In this paper we show that any Taimanov semigroup 7 has the following topological
properties:

(1) every shift-continuous 77-topology on T is discrete;
(2) T isclosed in each T1-topological semigroup containing 7" as a subsemigroup;

(3) every non-isomorphic homomorphic image Z of T is a zero-semigroup and hence
any topology on Z turns it into a topological semigroup.

The first statement generalizes the original result of Taimanov [21] and is proved in
the following proposition.

Proposition 2. Every shift-continuous Ty -topology T on any Taimanov semigroup T is
discrete.

Proof. The statement is trivial if the semigroup 7 is finite. So, assume that 7" is infinite.
The topology 7 satisfies the separation axiom 77 and hence contains an open set U C X
such that 07 € U and oo ¢ U.

First we prove that the points 07 and cor are isolated in 7. Chose any point x €
T \ {07, 007} and observe that x - 07 = x - oo = 07 € U. By the shift-continuity of
the topology t, there exist neighborhoods Uy € 1 of 07 and Uy € 7 of cor such that
(x-Up)U(x-Uso) C U. We claim that Uy \ {x, cor} = {07} and Ux \ {x,07} = {ocor}.
In the opposite case we could find a point y € (Up U Ux) \ {x,07, 007} and conclude
that cor = xy € x - (Up U Ux) C U C T \ {ocor}, which is a desired contradiction
showing that the points 07 and co7 are isolated in 7.

To show that each point x € T \ {07, cor} is isolated in the topology 7, observe
that xx = 07 € T \ {oor} € 7 and use the shift-continuity of the topology t to find a
neighborhood Uy € t of x such that xU, C T \ {oor}. Assuming that Uy # {x} we
can choose any point y € Uy \ {x} and conclude that cor = xy € T \ {oor}, which is
a contradiction showing that U, = {x} and hence the point x is isolated in the topology
T. O

The following example shows that any infinite Taimanov semigroup admits a non-
discrete semigroup 7p-topology.

Example 2. For any infinite Taimanov semigroup 7" the family of subsets
1:={U CT:ifOr € U,thenoor € U and |T \ U| < w}
is a Tp-topology turning 7" into a topological semigroup.

A semitopological semigroup S will be called square-topological if the map S — S,
x > x2, is continuous. It is clear that each topological semigroup is square-topological.

Theorem 1. A Taimanov semigroup T is closed in any square-topological semigroup S
containing T as a subsemigroup and satistying the separation axiom Ty .

Proof. Assuming that T is not closed in S, choose any point s € T \ T. We claim that
sx = oot forany x € T \ {Or,cor}. Assuming that sx # oor and using the shift-
continuity of the 77-topology of S, we can find a neighborhood Uy C S of s such that
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Us-x C S\{oor}. Since s is an accumulation point of the set 7" in S, there exists a point
y € Us\ {x,0r, cor}. For this point y we get cor = yx € Usx C S \ {oor}, which is
a contradiction showing that sx = cop forany x € T \ {Or, cor}. Next, we show that
ss = oor. Assuming that ss # oo, we can use the shift-continuity of the 7T7-topology
of S to find a neighborhood Vs C S of s such that sVy C S \ {oo7}. Since s is an
accumulation point of the set T in S, there exists a point x € Vs N T \ {Or, cor}. For
this point x, we get cor = sx € sVy C S\ {cor}, which is a contradiction showing that
ss = oor. By the separation axiom 77, the set S \ {07} is an open neighborhood of cor
in S. The continuity of the map S — S, x — x?2, yields a neighborhood Wy C S such
that x2 € S \ {07} for any x € W. Since s is an accumulation point of the set 7 in S,
there exists a point x € WyNT \{0r, cor}. For this point x we get 07 = xx € S\ {07},
which is a desired contradiction showing that the set T is closed in S. O

The following example shows that any infinite Taimanov semigroup admits a (non-
closed) embedding into a compact Hausdorff semitopological semigroup and also shows
that the continuity of the map S — S, x > x2, in Theorem 1 is essential and cannot be
replaced by the continuity of the map S — S, x + x™, for some m > 3.

Example 3. Let 7 be a Taimanov semigroup and X be any 77-topological space con-
taining 7T as a non-closed dense discrete subspace. Extend the semigroup operation of
T to a binary operation of X defined by the formula:

0r ifx=yeTor{x,y}N{0r,ocor} # ;

Xy = .
oor otherwise.

Since (xy)z = Or = x(yz) for any x, y,z € X the extended operation is associative
and turns X into a commutative semigroup containing 7" as a subsemigroup. Observe
that for a € {07,007} the shiftl, = r; : X — X, x — ax = xa = O, is constant
and hence continuous. For any a € T \ {Or,cor} the shift [, = r, : X — X,
X  xa = ax, is almost constant in the sense that /;1(cor) = X \ {a,07,cor}
and hence is continuous (as the set {a,0r,ocor} is closed and open in X). For any
a € X\Ttheshiftl, =r, : X - X, x > xa = ax, is almost constant in
the sense that [ !(cor) = X \ {Or,cor} and hence is continuous. This shows that
X is a semitopological commutative semigroup containing 7" as a non-closed dense
subsemigroup. Observe also that for every m > 3 the map X" — X, (x1,...,Xm) —
X1--+Xm = Or, is constant and hence continuous. Then the map X — X, x > x™, is
continuous as well.

Example 4. For any topological zero-semigroup Z with zero 0z and any Taimanov
semigroup 7" endowed with the discrete topology, any map 4 : T — Z with h(07) =
h(ocor) = 0z is a continuous semigroup homomorphism. Hence there exist many
topological (zero-)semigroups containing continuous homomorphic images of Taimanov
semigroups as non-closed subsemigroups.

Proposition 3. Any non-isomorphic homomorphic image S of a Taimanov semigroup
T is a zero-semigroup.
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Proof. Fix a non-injective surjective homomorphism # : T — S. If f(07) = f(ocoT),
then SS = f(T)- f(T) = f(TT) = f{0r,00r}) = {f(07)}, which means that S
is a zero-semigroup. So, assume that f(07) # f(cor). Since f is not injective, there
exist two distinct points a,b € T with f(a) = f(b). Since f(0r) # f(ocor), one of
the points a, b, say a, belongs to T\ {07, cor}. If b ¢ {O7,cor}, then ab = oot and
aa = Ot and hence f(cor) = f(ab) = f(a) f(b) = f(a)f(a) = f(aa) = f(O7),
which contradicts our assumption. This contradiction shows that b € {07, cor} and
hence h¢c = O forany c € T.

If |T| > 4, then we can find a point ¢ € T \ {a,07,00r} and conclude that
floor) = flac) = f(a)f(c) = f(b)f(c) = f(bc) = f(Or), which contradicts

our assumption. So, |7'| < 3 and hence T = {a, 07, cor} and

S = f(T) = {f(a). f(Or). f(oor)} = {f(b).{f(O1). f(oor)} = {f(OT). f(00T)}.

Then SS = f({xy : x,y € {Or,00r}}) = {f(07)}, which means that S is a zero-
semigroup. O

Since the semigroup operation Z x Z — {0z} C Z of any zero-semigroup Z
is constant and hence is continuous with respect to any topology on X, Proposition 3
implies the following corollary.

Corollary 1. Every non-isomorphic homomorphic image S of a Taimanov semigroup
is a topological semigroup with respect to any topology on S

We call that a semigroup S is algebraically complete in a class . of semitopological
semigroups if S is a closed subsemigroup in each semitopological semigroup 7" € .%
containing S as a subsemigroup. Theorem 1 implies the following

Corollary 2. Each Taimanov semigroup T is algebraically complete in the class of
square-topological semigroups satisfying the separation axiom Ty. In particular, T is
algebraically complete in the class of T} -topological semigroups.

Remark 1. Corollary I implies that for any Taimanov semigroup T and any non-iso-
morphic surjective homomorphism h : T — S with the infinite image S = h(T) the
semigroup S is a dense proper subsemigroup of some (compact) Hausdorff topological
zero-semigroup.
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