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We present a complete classification of Hausdorff locally compact polycyclic monoids up to
a topological isomorphism. A polycyclic monoid is an inverse monoid with zero, generated by a
subset ƒ such that xx�1 D 1 for any x 2 ƒ and xy�1 D 0 for any distinct x; y 2 ƒ. We prove
that any non-discrete Hausdorff locally compact topology with continuous shifts on a polycyclic
monoid S coincides with the topology of one-point compactification of the discrete space S n f0g.

С. Бардила. Класифiкацiя локально компактних напiвтопологiчних полiциклiчних моно-
їдiв // Мат. вiсн. Наук. тов. iм. Шевченка. — 2016. — Т.13. — C. 21–28.

Отримано повну класифiкацiю гаусдорфових локально компактних напiвтопологiчних
полiциклiчних моноїдiв. Полiциклiчним моноїдом називається iнверсний моноїд з нулем
i множиною генераторiв ƒ такою, що xx�1 D 1 для довiльного x 2 ƒ i xy�1 D 0 для
довiльних рiзних x; y 2 ƒ. Доведено, що кожна недискретна гаусдорфова локально компа-
ктна топологiя з неперервними зсувами на полiциклiчному моноїдi S збiгається з топологiєю
одноточкової компактифiкацiї дискретного простору S n f0g.

Introduction

In this paper we present a complete classification of locally compact semitopological
polycyclic monoids up to a topological isomorphism.

We shall follow the terminology of [6, 8, 14, 17]. First we recall some information
on inverse semigroups and monoids. We identify cardinals with the sets of ordinals of
smaller cardinality.

A semigroup is a set S endowed with an associative binary operation � W S �S ! S ,
� W .x; y/ 7! xy. An element e 2 S is called the unit (resp. zero) of S if xe D x D ex

(resp. xe D e D ex) for all x 2 S . A semigroup can contains at most one unit (which
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will be denoted by 1) and at most one zero (denoted by 0). A monoid if a semigroup with
a unit.

A semigroup S is called inverse if for every element a 2 S there exists a unique
element a�1 (called the inverse of a) such that aa�1a D a and a�1aa�1 D a�1. An
inverse monoid is an inverse semigroup with unit. We say that an inverse monoid S
is generated by a subset ƒ � S if S coincides with the smallest subsemigroup of S
containing the set ƒ [ƒ�1.

A polycyclic monoid is an inverse monoid S with zero 0 ¤ 1, which is generated
by a subset ƒ � S such that xx�1 D 1 for all x 2 ƒ and xy�1 D 0 for any distinct
x; y 2 ƒ. If the generating set ƒ has cardinality �, then S is called a �-polycyclic
monoid. We claim that jƒj � 2. In the opposite case, ƒ D fxg is a singleton and
0 2 S D fx�nxm W n;m 2 !g, which implies that 0 D x�nxm for some non-negative
numbers n;m. Then 0 D xnC1 � 0 � x�m D xnC1.x�nxm/x�m D x and hence 1 D
xx�1 D 0x�1 D 0, but this contradicts the definition of a polycyclic monoid.

A canonical example of a �-polycyclic monoid can be constructed as follows. Let
M�˙ be the monoid of all words in the alphabet fx; x�1 W x 2 �g, endowed with the
semigroup operation of concatenation of words. The empty word is the unit 1 of the
monoid M�˙ . Let M 0

�˙
WD M�˙ [ f0g be the monoid M�˙ with the attached external

zero, i.e., an element 0 … M�˙ such that 0 � x D 0 D x � 0 for all x 2 M 0
�˙

. On the
monoid M 0

�˙
consider the smallest congruence � containing the pairs .xx�1; 1/ and

.xy�1; 0/ for all distinct elements x; y 2 �. Then the quotient semigroupM 0
�˙
=� is the

required canonical example of a �-polycyclic monoid, which will be denoted by P� and
called the �-polycyclic monoid.

Algebraic properties of the �-polycyclic monoid were deeply investigated in the pa-
pers [16, 11, 12, 4] and the monograph [14, §6.3]. According to Theorem 5 in [14, §6.3]
and Theorem 2.5 in [4], the semigroup P� is congruence-free, which implies that each
�-polycyclic monoid is algebraically isomorphic to P�.

The aim of this paper is to describe Hausdorff locally compact topologies on P�,
compatible with the algebraic structure of the semigroup P�. A suitable compatibility
condition is given by the notion of a semitopological semigroup.

A semitopological semigroup is a semigroup S endowed with a Hausdorff topology
making the binary operation S � S ! S , .x; y/ 7! xy, separately continuous. If this
operation is jointly continuous, then S is called a topological semigroup.

For a cardinal � � 2 by P d
�

we shall denote the �-polycyclic monoid P� endowed
with the discrete topology, and by P c

�
the monoid P� endowed with the compact topol-

ogy � D
˚
U � P� W 0 2 U ) .P� n U is finite/

	
of one-point compactification of the

discrete space P� n f0g. It is clear that P d
�

is a topological monoid. On the other hand,
P c
�

is a compact semitopological monoid, which is not a topological semigroup.
By [4], each locally compact topological �-polycyclic monoid is discrete and hence

is topologically isomorphic to P d
�

. In the semitopological case we have the following
dichotomy, which is the main result of this paper.

Main Theorem. Any locally compact semitopological polycyclic monoid S is either
discrete or compact. More precisely, S is topologically isomorphic either to P d

�
or to
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P c
�

for a unique cardinal � � 2.

Since the compact semitopological �-polycyclic monoid P c
�

fails to be a topological
semigroup, Main Theorem implies the mentioned result of [4]:

Corollary. Any locally compact topological polycyclic monoid S is discrete. More
precisely, S is topologically isomorphic to the topological �-polycyclic monoid P d

�
for

a unique cardinal � � 2.

Some other topologizability results of the same flavor can be found in [7, 19, 18, 13,
1, 9, 15, 2, 10, 3, 4, 5].

Proof of Main Theorem

The proof of Main Theorem is divided into a series of 12 lemmas.
Let S be a non-discrete locally compact semitopological polycyclic monoid and letƒ

be its generating set. By Theorem 5 in [14, §6.3] and Theorem 2.5 in [4], the polycyclic
monoids are conguence-free, which implies that S is algebraically isomorphic to the �-
polycyclic monoid P� for some � � 2. Theorem 2.2 in [4] implies that the cardinal � is
unique. So, we can identify S with P� and the cardinal � with the generating set ƒ of
the inverse monoid S .

Let SC be the submonoid of S , generated by the set ƒ (i.e., SC is the smallest
submonoid of S containing the generating set ƒ). Elements of SC can be identified
with words in the alphabet ƒ. Such words will be called positive. The relations between
the generators of S guarantee that each non-zero element a of S can be uniquely written
as u�1v for some positive words u; v 2 SC. Then by #a we denote the set of all prefixes
of the word u�1v. For a subset C � S we put #C D

S
a2C #a.

The following algebraic property of a polycyclic monoid is proved in [4, Proposi-
tion 2.7].

Lemma 1. For any non-zero elements a; b; c 2 S , the set fx 2 S W axb D cg is finite.

This lemma will be applied in the proof of the following useful fact that can be found
in [4, Proposition 3.1].

Lemma 2. All non-zero elements of S are isolated points in the space S .

Proof. For convenience of the reader we present a short proof of this important lemma.
First we show that the unit 1 is an isolated point of the semitopological monoid S . Take
any generator g 2 ƒ and consider the idempotent e D g�1g of S . Since the map
S ! eS , x 7! ex, is a retraction of the Hausdorff space S onto eS , the principal right
ideal eS D g�1S is closed in S . By the same reason, the principal left ideal Se D Sg is
closed in S . The separate continuity of the semigroup operation yields a neighborhood
U1 � S n .g

�1S [ Sg/ of 1 such that 0 … .e � U1/ \ .U1 � e/. We claim that U1 D f1g.
In the opposite case, U1 contains some element a ¤ 1, which can be written as u�1v
for some positive words u; v 2 SC. Since a ¤ 1 one of the words u; v is not empty. If
u is not empty, then a 2 U1 � S n g�1S implies that the word u�1 does not start with
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g�1. In this case ea D g�1gu�1v D g�1 � 0 D 0, which contradicts the choice of the
neighborhood U1 3 a. If the word v is not empty, then a 2 U1 � S n Sg implies that v
does not end with g. In this case ae D u�1vg�1g D 0, again contradicting the choice
of U1. This contradiction shows that the unit 1 is an isolated point of S .

Now we can prove that each non-zero point a 2 S is isolated. Write a as u�1v
for some positive words u; v 2 SC. Since uav�1 D 1, the separate continuity of
the semigroup operation on S , yields an open neighborhood Oa � S of a such that
uOav

�1 � U1 D f1g. By Lemma 1, the neighborhood Oa is finite and hence the
singleton fag D Oa n .Oa n fag/ is open, which means that the point a is isolated in
S .

Lemma 2 implies that the locally compact space S has a neighborhood base at zero,
consisting of compact sets. It also implies the following useful lemma.

Lemma 3. For any compact neighborhoods U0; V0 � S of zero the set U0 n V0 is finite.

For an element u 2 S by Ru WD fx 2 S W xS D uSg we denote its Green R-class
in S . Here uS D fus W s 2 Sg is the right principal ideal generated by the element u.

Lemma 4. Every non-zero R-class in S coincides with the R-class Ru�1 D Ru�1u for
some positive word u 2 SC.

Proof. Each non-zero element of the semigroup P� can be written as u�1v for some
positive words u; v 2 SC. Taking into account that u�1v �v�1 D u�1, we conclude that
Ru�1v D Ru�1 D Ru�1u.

In the following Lemmas 5–12 we assume thatU0 is any fixed compact neighborhood
of zero in the semitopological monoid S . Since zero is a unique non-isolated point in S ,
the neighborhood U0 is infinite.

Lemma 5. The neighborhood U0 has infinite intersection with some R-class of S .

Proof. To derive a contradiction, assume U0 has finite intersection with each R-class of
the semigroup S . Taking into account that U0 is infinite and applying Lemma 4, we can
see that the set B D fu 2 SC W Ru�1 \U0 ¤ ∅g is infinite. For every u 2 B denote by
vu a longest positive word in SC such that u�1vu 2 Ru�1 \U0 (such word vu exists as
the set Ru�1 \ U0 is finite). It follows that A D fu�1vu W u 2 Bg is an infinite subset
of U0. Fix any element g of the generating set ƒ of S . Since 0 � g D 0, we can use the
separate continuity of the semigroup operation of S and find a compact neighborhood
V0 � U0 of zero such that V0 �g � U0. But then V0 � U0 nA which contradicts Lemma
3.

Lemma 6. The neighborhood U0 has infinite intersection with each non-zero R-class
of the semigroup S .

Proof. By Lemma 4, any non-zero R-class of the semigroup S D P� is of the form
Rv�1 for some positive word v 2 SC. By Lemmas 4 and 5, for some element u 2 SC
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the intersectionU0\Ru�1 is infinite. Observe that v�1u�Ru�1 � Rv�1 . By the separate
continuity of the semigroup operation at 0 D v�1u �0, there exists a neighborhood V0 �
S of zero such that v�1u �V0 � U0. By Lemma 3, the difference U0 nV0 is finite, which
implies that the intersection V0 \Ru�1 is infinite. Then the set v�1u � .V0 \Ru�1/ �

U0 \Rv�1 is infinite, too.

Lemma 7. If the generating set ƒ is finite, then the neighborhood U0 contains all but
finitely many elements of the R-class R1 D fx 2 S W xS D Sg.

Proof. To derive a contradiction, assume that the set A WD R1 nU0 is infinite. We claim
that for every g 2 ƒ the set Ag D fa 2 A W ag 2 U0g is finite. Indeed, suppose that
Ag is infinite. By Proposition 1, Ag � g is an infinite subset of U0. Since 0 � g�1 D 0,
the separate continuity of the semigroup operation on S yields a compact neighborhood
V0 � U0 of zero such that V0 � g�1 � U0. Then V0 � U0 n .Ag � g/ which contradicts
Lemma 3.

Let A� D A n
S
g2ƒ #Ag (we recall that #Ag D

S
a2Ag

#a where #a is the set of
all prefixes of the word a). It follows thatA� is a cofinite (and hence infinite) subset ofA.
Now we are going to show that A� is a right ideal of R1. In the opposite case we could
find elements c 2 R1 and v 2 A� such that vc … A�. Let c� be the longest prefix of c
such that vc� 2 A� (the word c� can be empty, in which case it is the unit of S ). Then
vc�g … A� for some g 2 ƒ. Observe that vc� 2 A� � A � R1 implies vc�g 2 R1.
Assuming that vc�g 2 U0, we conclude that vc� 2 Ag � #Ag , which contradicts the
inclusion vc� 2 A�. So, vc�g … U0 and hence vc�g 2 A. Then vc�g … A� implies
that vc�g 2 #Af for some f 2 ƒ and thus vc� 2 #Af , too. But this contradicts the
inclusion vc� 2 A�. The obtained contradiction implies that A� is a right ideal of R1.

Let u 2 A� be an arbitrary element. Since u � 0 D 0, the separate continuity of
the semigroup operation yields a compact neighborhood V0 � U0 of zero such that
u �V0 � U0. Proposition 1 and Lemma 6 imply that u � .V0\R1/ is an infinite subset of
A� \U0 � A\U0. In particular, A\U0 is not empty, which contradicts the definition
of the set A WD R1 n U0.

Lemma 8. If the cardinal � D jƒj is finite, then the neighborhood U0 contains all but
finitely many elements of any R-class Rx , x 2 S .

Proof. The lemma is trivial if x D 0. So we assume that x ¤ 0. By Lemma 4,
Rx D Ru�1 for some positive word u 2 SC. Since u�1 � 0 D 0, the separate continuity
of the semigroup operation yields an neighborhood V0 � U0 of zero such that u�1 �V0 �
U0. By Lemmas 3 and 7, R1 �� V0 (which means that R1 n V0 is finite). Then
Rx D Ru�1 D u�1 � R1 �� u�1 � V0 � U0, which means that U0 contains all but
finitely many points of the R-class Rx .

The following lemma proves Main Theorem in case of finite cardinal � D jƒj.

Lemma 9. If the cardinal � is finite, then the set S n U0 is finite.
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Proof. To derive a contradiction, assume that S n U0 is infinite. By Lemma 8, for each
u 2 SC the set Ru�1 nU0 is finite. Since the complement S nU0 D

S
u2SC Ru�1 nU0

is infinite, the set B D fu 2 SC W Ru�1 n U0 ¤ ∅g is infinite, too. For every u 2 B
denote by vu the longest word in SC such that u�1vu 2 Ru�1 nU0. Then C D fu�1vu W
u 2 Bg � Ru�1 n U0 is infinite and by Proposition 1, for every g 2 ƒ the set C � g
is an infinite subset of U0. Since 0 � g�1 D 0, the separate continuity of the semigroup
operation yields a neighborhood V0 � U0 of zero such that V0 �g�1 � U0. By Lemma 3,
the set U0 n V0 is finite. Since the set Cg � U0 is infinite, there is an element c 2 C
with cg 2 V0. Then c D cgg�1 2 V0g

�1 � U0, which contradicts the inclusion
C � R1 n U0.

Lemma 10. The set R1 n U0 is finite.

Proof. To derive a contradiction, assume that the complement A WD R1 nU0 is infinite.
By Lemma 6, the set U0 \R1 is infinite.

For a finite subset F � ƒ, let SF be the smallest subsemigroup of S containing the
set F [ F�1 [ f0; 1g. If jF j � 2, then SF is a polycyclic monoid. Separately, we shall
consider two cases.

1. First assume that for every finite subset F � ƒ the set U0 \ SF is finite. In this
case for every point g 2 ƒ, consider the set Wg D fa 2 U0 \ R1 W ag … U0g. The
separate continuity of the semigroup operation yields a neighborhood V0 � U0 of zero
such that V0 �g � U0. Lemma 3 implies that the setWg � U0 nV0 is finite and hence for
every non-empty finite subset F � ƒ the set UF WD .U0 \R1/ n

S
g2F Wg is infinite.

We claim that UF � y � UF for every y 2 SF \R1. In the opposite case, there exist
elements y 2 SF \R1 and x 2 UF such that xy … UF . Let y� be the longest prefix
of y such that xy� 2 UF (note that y� could be equal to 1). Then xy�g … UF for
some g 2 F . Hence xy� 2 Wg which contradicts the definition of UF 3 xy�. Hence
UF � y � UF for each element y 2 SF \R1.

Fix any element v 2 UF and find a finite subset D � ƒ such that v 2 SD , F � D
and jDj � 2. Proposition 1 implies that v � .SF \R1/ is an infinite subset of UF \ SD ,
which contradicts our assumption.

2. Next, assume that for some finite subset F � ƒ the intersection U0 \ SF is
infinite. For every g 2 F consider the subset Ag WD fa 2 A W ag 2 U0g of the
infinite set A D R1 n U0. The separate continuity of the semigroup operation yields a
neighborhood V0 � S of zero such that V0 � g�1 � U0. We claim that for every a 2 Ag
we get ag … V0. In the opposite case we would get a D agg�1 2 V0 � g�1 � U0, which
contradicts the inclusion a 2 A. Then Ag D fa 2 A W ag 2 U0 n V0g and this set is
finite by Lemmas 3 and 1. It follows that AF D A n

S
g2F #Ag is a cofinite (and hence

infinite) subset of A.
We claim that AF � y � AF for every y 2 SF \R1. In the opposite case, we can

find elements y 2 SF \ R1 and x 2 AF such that xy … AF . Let y� be the longest
prefix of y such that xy� 2 AF (note that y� could be equal to 1). Then xy�g … AF
for some g 2 F . It follows from xy� 2 AF � A D R1 n U0 and gg�1 D 1 that
xy�g 2 R1. Assuming that xy�g 2 U0, we conclude that xy� 2 Ag , which contradicts
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the inclusion xy� 2 AF . So, xy�g 2 R1 n U0 D A and then xy�g … AF implies that
xy�g 2 #Ah for some h 2 F and finally xy� 2 #Ah, which contradicts the inclusion
xy� 2 AF . This contradiction completes the proof of the inclusion AF � y � AF for
each y 2 SF \R1.

Fix any element v 2 AF and find a finite subset D � ƒ such that v 2 SD , F � D
and jDj � 2. The subset SD contains the unique non-isolated point of the space S
and hence is closed in S . The local compactness of S implies the local compactness
of the polycyclic monoid SD endowed with the subspace topology. Lemma 3 and our
assumption guarantee that the semitopological polycyclic monoid SD is not discrete.
By Proposition 1, v � .SF \ R1/ is an infinite subset of AF \ SD � SD n U0. But
this contradicts Lemma 9 (applied to the locally compact polycyclic monoid SD and the
neighborhood U0 \ SD of zero in SD).

Lemma 11. The neighborhood U0 contains all but finitely many points of each R-class
in S .

Proof. By Lemma 4, it suffices to check that for any u 2 SC the set Ru�1 nU0 is finite.
The separate continuity of the semigroup operation yields a compact neighborhood V0 �
U0 of zero such that u�1 � V0 � U0. By Lemmas 10 and 3, we get R1 �� V0. Then
Ru�1 D u�1 �R1 �� u�1 � V0 � U0, which means that the set Ru�1 nU0 is finite.

Our final lemma combined with Lemma 2 proves Main Theorem and shows that the
semitopological polycyclic monoid S carries the topology of one-point compactification
of the discrete space S n f0g.

Lemma 12. The complement S n U0 is finite and hence S is compact.

Proof. To derive a contradiction, assume that the set S n U0 is infinite. By Lemma 11,
for each u 2 SC the set Ru�1 n U0 is finite. Since S D

S
u2SC Ru�1 , the set B D

fu 2 SC W Ru�1 n U0 ¤ ∅g is infinite. For every u 2 B denote by vu the longest
word in SC such that u�1vu 2 Ru�1 n U0. Then C D fu�1vu W u 2 Bg is an infinite
subset of S n U0. By Lemma 1, for any g 2 ƒ the set C � g is infinite. The separate
continuity of the semigroup operation yields a neighborhood V0 � U0 of zero such that
V0 � g

�1 � U0. Then V0 � U0 n .C � g/ which contradicts Lemma 3.
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