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We investigate the fast growing entire solutions of linear differential equations. For that we
introduce a general scale to measure the growth of entire functions of infinite order including
arbitrary fast growth. We describe growth relations between entire coefficients and solutions of
the linear differential equation f(”) +an—1 (Z)f(”_l) +---+ap(z) f = 0in this scale. Obtained
results contain those for iterated orders as a special case.

I. Ymxukos, H. Cemouko. Illsudxko3pocmaroui uini po3e’sisku AiHIHUX Jugpepenyianorux pis-
Hsinb [/ Mart. BicH. Hayk. ToB. im. IlleBuenka. — 2016. — T.13. — C. 68-83.

Mu gociKyeMO IBUAKO3POCTAIOYI LiJli pO3B’ SI3KU JIIHIHHUX AU(epeHLiaibHUX piBHSIHDb. ist
OO MM BBOJUMO y3araJlbHeHy IIKaly [Jisi BAMIpPIOBaHHSI 3pOCTAaHHS HUIMX (DYHKLiH HECKiHUEeH-
HOTO MOPSIAKY Ta AOBUIBHOTO MBUAKOTO 3pocTaHHS. OMNMCaHO 3B’SI30K MiX 3POCTaHHSIM Koedi-
LIEHTIB Ta PO3B’SI3KiB JIIHIMHOTO AM(EepeHIiaIbHOTO PiBHSIHHS | M 4 g, 2)f (=1 4 ... 4
ao(z) f = 0y uidt mkani. OTpuMaHi pe3yJIbTaTH MIiCTSTh Pe3yJIbTaTH AJIs iTepaLiiftHoOro MopsIaKy
SIK OKPEMHI BUIIAJIOK.

1. Introduction and formulation of the main results

Let us consider the linear differential equations of the form

L(f) =P+ a1 D+t ag(2) f =0, (1)
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where ao,. .., an—1 are entire functions, n > 2, ag # 0. Itis well-known that all solutions
are entire in this case, moreover ([16]) all coefficients of (1) are polynomials if and only
if all solutions have growth of finite order.

If the coefficients are transcendental and entire, then the solutions are of infinite
order, in general. There are several scales to measure the growth of functions of infinite
order (see e.g. [12, 14]). Many mathematicians, such as L. Kinnunen, J. Heittokangas,
R. Korhonen, J. Rittyd, T.B. Cao, Z.X. Chen, K. Hamani, B. Belaidi, and others used
the iterated orders [9], [7], [3], [2], [6] to study the growth of solutions of (1). It is
introduced as follows.

For r € [0, +00) define the iterations exp!l r = e, exp" T = exp(exp! r),
n € N, and for all sufficiently large r define Iy = mnr, W, = ln(ln[”] r),
n € N. Also, expl® r = r = (o .

Fori € N the value "

oi(f) = limsupw
r—+o00 Inr

is called i-th iterated order of a meromorphic function f, where

2w

10 f) =5 [ W 1706 + N 1)
0
is the Nevanlinna characteristic of f ([5]) and N(r, f) is the Nevanlinna counting func-
tion of poles.
Note that o1( f) coincides with the usual concept of the order. In particular, the
following estimate for order of the growth holds.

Theorem 1.1 ([16]). Any solution f of the equation (1) with polynomial coefficients
o
aj(z)=Y ez, j=0...n—1
k=0

has ordero1(f) <1+ max ) -

0<j<nn—]

The finiteness degree of the order of a meromorphic function f ([9]) is defined by

0, for f rational,
) min{j € N|o;(f) < +oo}, for f transcendental for which some
1 =

J € Nwitho;(f) < 400 exists;
+o00, for f witho;(f) = +ooforall j € N.

For entire solutions of (1) we introduce the following notation

§ :=sup{i(f) | L(f) =0, @)
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vi =sup{o;(f) | L(f) =0}, j €N, 3
p:i=max{i(a;)|j=0,...,n—1}. 4)

If 0 < p < 400, we also define
»x:=max{op(a;) | j=0,....,n—1} 5)

Here there are typical results that establish the relations between maximal growth of
solutions and coefficients.

Theorem 1.2 ([9]). Let p, 8, yp and » be defined by (2)—(5). If 0 < p < +o0, then
S=p+landypy1 = .

Theorem 1.3 ([9]). Let p be defined by (4). If 0 < p < +o0 and j = max{k |
iap) = p, k = 0,...,n — 1}, then (1) possesses at most j linearly independent
solutions f withi(f) < p.

J. Lin, J. Tu and L.Z. Shi considered ([11]) a slightly more flexible scale to study the
growth of solutions. Namely, they used the following definition of the order from [12]

(p.q €N)

l

. P 7 (r, £)
0[p,q1(f) = limsup — .
r—+oo In'4! r

and obtained counterparts of results proved for iterated orders.

Both definitions of iterated orders and of [p, g]-orders have the disadvantage that
they do not cover arbitrary growth, i.e. there exist functions of infinite [p, g]-order and
pth iterated order for arbitrary p € N, i.e. of infinite degree.

Since we have not found an appropriate reference, we give an example for conve-
nience of the reader.

Example 1.4. Similarly to the iterations of the exponent we define 21 (x) = 2%,
2+ () = 22" for n € N. We consider the lacunary series

= [n] [n]
Y(z) =Y 272200, (6)

n=0

It is easy to check that the radius of convergence of series (6) equals infinity, therefore
is an entire function.

We estimate from below the maximal term u(r, ) = max{Z_kz[k](k)rz[k](k) tk >
0}, |z| = r of series at the points r, = eX, k € N. From the definition of maximal term
it follows that

w(rn, W) > 2—n2["](n)en2[”](n) _ r}gl—ln2)2["](n) _

_ r}gl—lnz)zlﬂ—ﬂm") > rél—ln2)2[”_2](r,,)‘ (7)
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It is clear that Int/ ~1] 2U1(r) > r as r — 400 for every fixed j € N.
Hence, we have

n w(rm, ¥) > (1 =222 nr, > 2072@,), n >3,

Il () > W22y > 202771 ) oo

By Cauchy’s inequality Inl/! M(ry, ) > ln[j],u(rn,l//) > 2[”_2_j](rn) as
n — o0 hence 0 () = +oo forall j € N.

We consider a more general scale, which does not have this disadvantage (cf. [14]).
Let ¢ be an increasing unbounded function on [1, +00). We define the orders of the
growth of an entire function f by

M(r, _ _ In M (r,
gg[f] =limsupM, %1,[f] =hmsupM,
r—-+o0 Inr r—-+o0 Inr
where M(r, f) = max{|f(2)| : |z| = r}.
If g is meromorphic, then the orders are defined by

T(rg) T
G(g[f] = lim sup ple %) ), o(; [f] = limsup o0 8) g)).
r—-+o0 Inr r—>+o00 Inr
By @ we define the class of positive unbounded increasing function on [1, +00) such
that g(e’) is slowly growing, i.e.

p(e)

Ve >0:
p(e’)

— 1, t —> 400.

We define also
Yo :=sup{o [ f1| L(f) =0},

Qyp 1= sup{ag[aj] |j=0,....,.n—1}, jeN,
Remark 1.5. It follows from Proposition 3.1, which will be proved below, that
Vo = sup{Gy[f11 L(f) =0}, ap =sup{G,[f]]j=0,....n—1}.

Remark 1.6. We note that in the case when ¢(r) = mlflr ieN, U([l, -order coincides
with ith iterated order. On the other hand, the function ¢(r) = Inr does not belong to
the class @, but in view of Theorem 1.1 the counterpart of the assertion of Theorem 1.8
does not hold in this case.

The next example shows that we can often successfully use oy,-order instead of
[p, q]-order.
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Example 1.7. Let f be an entire function such that
m2 7@, f) = (t + 0o(1))(Inr)°,

where 7,0 > 0. Such entire function exists due to [4], because exp®!(z(Inr)?) is
convex in In r.
This function f has [3, 2]-order ¢, and moreover so called finite type t of this order,
i.e. there exists
, m2 7@, £)
limsup —————= =
r—>+o00 (Inr)e

For ¢(r) = (ln[z] r)% there exists

1
TO.

aé[f] =limsupM =

r—>-+o00 Inr

We formulate the main results, which are counterparts of Theorems 1.2 and 1.3,
respectively.

Theorem 1.8. Let¢ € @, theny, = ay.

Theorem 1.9. Letp € ® and j = maxik | ag[ak] > B,k =0,...,n— 1}, then (1)
possesses at most j entire linearly independent solutions f with a(} [f] < B.

If the last coefficient aq in (1) dominates, we can state more on the order of solutions.

Theorem 1.10. Letyp € @, ay,...,a,—1 be entire functions such that
og[ao] > max{o(g[aj], j =1,...,n—1}. Then all solutions [ # 0 of (1) satisty

ool f1 = oylacl.

Remark 1.11. The most general scale of the growth of entire functions is due to M.
M. Sheremeta ([14]). His definition of («, 8)-order coincides with that 60} -order in the
case B(x) = x with only difference that in Sheremeta’s definition a(e’) need not to be
slowly growing, while o () is slowly growing. As we see from Remark 1.6, Theorem 1.8
is not valid for such «. The question whether counterparts of Theorems 1.8-1.10 hold
for («, B)-order with arbitrary @ € & and increasing 8 satisfying B((1 + o(1))x) =
(1+0(1))B(x), x — +00, remains open.

2. Properties of functions from the class ®

We give some properties of functions from the class .



FAST GROWING ENTIRE SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS 73

Proposition 2.1. Ifp € ©, then

o (Inx™)

Vm >0, Vk=>0:
xk

— 400, X — +00; )]

Ing=1((1 4+ 8)x)

Vé>0:
g ng1(x)

0, X — +o0. ©)]

Remark 2.2. If ¢ is non-decreasing, (9) is equivalent to the definition of the class ®.

Proof. We will prove from the contrary. Suppose that on some unbounded sequence
xp =en,neN

<p_1 (Ine™™) < elnk.

holds. Then mt, < ¢(e'k).

Since by Karamata’s Theorem ([13, p.10]), ¢(e?) = 1°) as r — +o0. We obtain
the contradiction which proves (8).

We now suppose that for ¢ > 0 and § > 0 on an unbounded sequence x, = ¢(e),

n — +o00, one has
Ine~1((1 + 8)p(e™))

Inp~1(p(e))

Then
cty
e N1 + 8)p(e™)) < e, 1468 < go(et ), n— 400.
p(ef)
But it is impossible in view of (6). Therefore, property (9) is proved. g

3. Properties of meromorphic functions of finite o,-order

This subsection contains basic properties of orders aé, 55, obtained using standard
methods. We give proofs for completeness.

Proposition 3.1. Letp € ® and f be an entire function. Then

Proof. We show the equality 0(; [f] = 8’(} [f]. The equality 03[ fl = 8’8[ f] can be
proved similarly.
By monotonicity of the function ¢ and the known inequality ([S])

R
TTIR ), 0<r <R, (10)

T(r,f)<InM(r, f) <
R—r

we have o(})[f] 5'5(},[]”].
We now prove the converse inequality.
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We choose R = kr, k > 1, and estimate the numerator. It follows from (10) that as
r— +oo

ptnstrpy _¢(BETRD) ¢ (BATRRD) (4 oppricn )

Inr Inr Inr - Inkr —Ink

In fact, the last inequality holds because (2) implies

Ve > 1: pct) <€) < (1 +o()e(t), t— +oo. (11)
~ : p(T(kr. [))
Therefore, 0(/1, [f] < limsup, 4o Y oqu [f]
The last inequality proves the required equality. O

Henceforth we consider only o(/l, [f]and 0(2 [ f] for meromorphic and entire functions

f.
We now show that the operations of addition and multiplication cannot increase the
order.

Proposition 3.2. Let f1, f> be meromorphic functions in C, ¢ € ®. Then
D ojlfi + fol < max{ojlfil.og[fal}. j = O.1.
2) ojlf1 f2) = maxtog [il.oglfal} j = 0.1,
3) op[+]=0pLAl.j =0.1. fi £0.

Proof. Let cr(}, [fi] = «, 0(; [f2] = B. Without loss of generality, we may suppose that
o < B. The definition of 0& -order implies that for any ¢ > 0 and for all ¥ > rg

T(r.fj) =0~ mrP*e). j=1.2.
The properties of the Nevanlinna characteristic ([5]) yield
T(r, fi + ) <T(r, f1) + T(r, f2) + 0(1) = O(p ' (InrP+®)), r —> +oo.

By the above inequality and (11), we have (T (r, f1 + f2)) < (B + ¢)Inr. By
arbitrariness of &, we obtain 0(/1) [fi+ 2]l <B= max{a(}, [ f1], 0(/1, [ 2]}
Properties 2 and 3 can be proved similarly. The proofs for (7(2 -order are analogous.

O
To prove the next assertion we need the following lemma.

Lemma 3.3 ([1]). Letg : [0,4+00) — R andh : [0, +00) — R be monotone nonde-
creasing functions such that g(r) < h(r) outside an exceptional set E of finite linear
measure. Then for any « > 1, there exists ro > 0 such that g(r) < h(ar) for allr > ry.
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Proposition 3.4. Let f be a meromorphic function and ¢ € ®. Then
oS <oflf)l j=01

Proof. We denote 0(}7 [f] = «. The definition of the quj -order implies that for any € > 0
and for all ¥ > rg as r — +oo we have T(r, f) = O(¢~ ! (Inr®**+¥)).
By the Lemma of the logarithmic derivative ([5, Chap. 3])

f/
m(r, 7) = O(ln T(r.f)+Inr), r¢E,

where E C [0, +00) is a set of finite linear measure.
Using the last estimate, properties of Nevanlinna’s characteristics and (8), we get

TGS = mlr )4 NG ) = m(n ) G )+ 280 <

< m(r, 7) +2T(r, ) = O(Ing ' (Inr®*®) + Inr) + O(p~ (Inr®*)) =

0((p_1(1n r“+8)), réE.
By Lemma 3.3,
T(r, f') = O(¢~ ' (In(2r)**®)) = O (¢ ' (nr*+?)), r> 0.

Therefore, in view of (9) we have that o(T'(r, f)) < (@ + 3¢)Inr as r — +00. By

arbitrariness of &, we finally obtain 0(; [f]<a= oqu [f]. og[f/] < O'g[f]. O
Lemma 3.5. Let f be a meromorphic function such that 0 < (7(2 [f] := 00 < +o0.

Then Y < o¢ exists a set E € [0; +00) of infinite logarithmic measure on [0; +00)
such that 9(eT" /)Y > pnr forallr € E.

Proof. The definition of the upper limit implies that there exists a sequence (R j);.;“i
satisfying
(1+1)R; <R; d 1 S
A j+1 an j_if_ir_loo R, = 0.
From the last equality it follows that for any ¢ (0 < ¢ < 09 — i) there exists an
integer jp such that for j > jj

@(eT®Ri-Dy > (69 —e)In R (12)

Since u < 0g — &, there exists an integer j, such that for j > j, we have

— 1 — InR;
(OO g—l)lnRj>ln(1+—.), Jo—¢, n 1] >
n J wo In(l+ 3)R;
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By the last inequality and the inequality (12) for j > j3 = max{Jji, j»} and for any
R e [Rj, 1+ %)RJ‘] we obtain

InR >

0" ") 2 9T R1D) > (0o ) In Ry = 2= ==
7! In R
_Oo—¢ In R;

1o In(l+ HR;

wlnR > plnR. (13)

+o00

We denote £ = | [R;.(1 + %)Rj]. It is easy to show that E is set of infinite
J=J3
logarithmic measure:
(1+L)Rj
E /dr E% d/ dr §§1(1+1) +
mE:=| —= — = n —) = +oo.
! r — r — J
E J=J3 R; J=J3

O

Lemma 3.6. Let f be a meromorphic function of order 0(} [f] = 0 andk € N, and
¢ € ® ThenVe >0
(k)
m(r,ff ) = 0(lng~ (nro+)

outside, possibly, an exceptional set E of finite linear measure.

Proof. First, let k = 1. The definition of %1) -order implies that for any ¢ > 0 for all
r>rgasr — +oowehave T(r, f) = O(ln ¢ H(In r°+8)). Again, by the Lemma of
the logarithmic derivative, in view of (8)

/

m(r, f7) = 0(1ng0_1(1nra+8) +1In r) = O(ln¢_1(lnr0+8)), ré E,  (14)

where E is a set of finite linear measure.
Next, assume that

(k)
m(r, ff ) = O(ln(p_l(lnr”+8)), ré E

for some k € N. Since N(r, f®) < (k + 1)N(r, f), we deduce

7®
) )+ G+ DNG, ) <

<k + DT f)+ O0(lne ' (Inr’)) = 0(p~ ' (Inr™%)). (15)

T f ) = mir f©) + NG f©) <

By (14) we obtain m(r, %) = O(ln ¢ (n r““)), r ¢ E, and hence,
(k+1) fUtD) £ ~
m(r =) = m(r ) +m(r ) = O(mg ™ @nrot). v .

O]
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4. Proofs of the main results

Proof of Theorem 1.8. First, we show that oy < yy. If y, = +00, it s trivial.
We assume that y, < +o00. Let f1,..., f, be a solution base for (1) of finite oé—
order. Properties of the Wronsky determinant imply that W = W( f1,..., f») # 0.
Propositions 3.2 and 3.4 imply that W is of finite 0(; -order. By properties of the
Wronsky determinant ([10])

n—q(z) = —Wn—q(f1...., fu)- w1, geil,....n},

where
fi fh
jf] 1) o f#j 1)
Wi(fi.... fa) = 1_(")1 ,{”)1
f(J+ ) fn(J+ )
Fn gy
In view of Proposition 3.2 we can conclude that all coefficients ay, . .., a,—; are of
finite a(} -order.
By Lemma 3.6
f(k)
m( = ) = 0(lng0_1(lnry‘/’+8)), r¢E,
1
where k > 1,i € {1,...,n}, E is a set of finite linear measure.

We now apply the standard order reduction procedure ([10]). Let us denote

o= L(L2)
Y\ ne )

an, = 1,and vf_l) : i ,l.e., (v(_l))/ = v7. Hence,
fr
k
O =3 (k) fvETT k=0, . (16)
m=0

Substituting (16) into (1) and using the fact that f solves (1), we obtain

' @ (@Y 4+ aro()v =0, (17

where
—Jj— (m)

+1+m 1
aij =dj41+ Z a]+1+m I
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for j =0,...,n — 2. The meromorphic functions

oy 4 (fiv1(2)
i = gz ().

form a solution base to (17). By y, < +o0 and Proposition 3.4, the functions vy ; are

=1,....,n—1, (18)

of finite oq% -order.

We now show that
m(r,a;) = O(lng '(Inr?**e)), rdE,  j=0,....n-2 (19)

imply
m(r,a;) = O(Ingp '(nr?*®), rdE, i=0,....n—1 (20)
We prove it by induction on i following [10]. By equality (17) for j = n —2 we have
a1n—2 = dp—1 +n’r. By Lemma 3.6 and (19)

/
m(r,an—1) < m(r,ayn—2) + m(r, ?) + 0(1) = O(In ¢ 1(In rrete)).
1
We assume that
m(r,a;) = O(lng '(Inr?*)), i=n—1,...,n—k. 1)
Since
k+1 . o)
A1 n—(k+2) = An—(k+1) T Z (m+n,; _l)am+n—k—1lf—l,
m=1
we have

m(r,ap—(k+1)) = m(r, a1 p—(k+2)) + m(r,an—1) + -+ m(r,an—i)+
f/ 1(k+1) . e
+m(r, 7) ot (r, - )+ 0(1) = O(Ing™ tnr7e*e), r¢ £, (22)
by Lemma 3.6, (19) and (21).
We may now proceed as above the order reduction procedure for (17). On each
reduction step, we obtain a solution base of meromorphic functions of finite o!-order

@
according to (18), and the implication (19)=>(20) remains valid. Hence, we finally obtain

an equation of the form u’ + A(z)u = 0. Since u is of finite o(}, -order we obtain

/

m(r, A) = m(r, %) = O(ln(p_l(lnry“’+s)), r ¢ E.

Observing the reasoning corresponding to (19) and (20) in each reduction step, we
see that
m(r,a;) = O(ln(p_l(lanJrs)), r ¢ E,
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holds for j = 0,...,n — 1. Since the coefficients a; are entire, we have m(r,a;) =
T(r,aj) = O(ln e nrve +8)) outside, possibly, an exceptional set E of finite loga-
rithmic measure. By Lemma 3.3 and Proposition 2.1

T(r,a;) = O(ln go_l(ln(2r)y“’+‘9)) <In go_l(lnry“’+2£), F— +o0.

p(el(ras))
Hence, Ty < Yo + 2¢. By arbitrariness of ¢ we obtain that oy < y,.
nr

We now prove the converse inequality under the assumption that oy, < +00. We
need the following assertion.

Lemma 4.1 ([10, p.10]). Let P(z) = anz" + ap_12"" ' 4+ --- 4+ ag witha, # 0 be a
polynomial. Then all zeros of P(z) lie in the discs D(0, r) of radius

)

We recall also the definition of the central index and the maximal term.
(o,]

ak

r <14+ max (
dap

1<k<n—1

Let f(z) = Y anz", z = ret? be an entire function, then 1 (r, f) = max{|a,|r"

n > 0} is the maximal term, and v(r, f) = max{n : |an|r" = u(r, )} is the central
index of f.

Theorem 4.2 ([10, p.10]). Let g be a transcendental entire function, let0 < § < Z and

z such that |z| = r and |g(z)| > M(r, g)v(r, g)_%”. Then there exists a set F C Ry
of finite logarithmic measure such that

¢ = (") (14 o))

holds forallm > 0 and allr & F.

By Theorem 4.2, for some set F' C R4 of finite logarithmic measure the following
equality

790 = (") (14 0m) 1) @3)
holds fori = 0,...,n and for |z| = r € F, chosen as in Theorem 4.2. Substituting (23)
into (1) we obtain
(Y v (M2) ™ o)+ () 2 (o) a0 @) (1+0(1) = 0
or
V()" +zan_1 @) TA+o()+...+2" a2 (r) (1+0(1)+2"ae(z) (140(1)=0.
The definition of }-order yields that for any & > 0 and for all ¥ > ro

eT(r,aj) Olw-i-(:‘)’

<o Ynr r — +oo.
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By Lemma 4.1 in view of (8), we have for any ¢ > 0
v(r, f) <14+ max 2" 7a;(z)1+o(1)] <1+ max 2r" 7o (Inr%*e) <
0<j=<n-—-1 0<j=<n-1
<1+42r"¢p YInr**¢) < o Y(nr**2¢), r¢F.
By the inequalities (4.12) and (4.15) [8, p.36-37], we obtain for each ¢ > 0

T(r, f) <InM(r, f) <Inp(r, f) +In@Q@r, f) +2) <
<v(r, f)lnr +1InQRv2r, f)) < ¢ 1Inr**2¢)Inr 4+ In(e~ 1 (InQ2r)%*¢)) <
<o (Inr®%T38) £ 102 4 Ing~ ' (In(2r)%T28) < o~ (In ree+4e).

Hence, ¢o(T'(r, f))/Inr < ay, + 4¢. By arbitrariness of ¢ we obtain that y, < .
Thus, the theorem is proved under the assumption that max{ay, Yy} < +00.

If only one of a, or y,, is finite, then by the proved we obtain a contradiction. There-
fore, either ay, = yp < +00, or @y = yp = +00. O

Proof of Theorem 1.9. By our assumptions there exist two numbers §1 and S, such that
ag[aj] > ﬂandog[al] <Bir<PBp<PBforl=j+1,...,.n—1.

Let f1,..., fj+1 be linearly independent solutions of (1) such that 0(; [fi] < B,
i=1,....,j+1.Ifj =n—1,thenall fi,..., f, are of o(;—order smaller than §,
contradicting Theorem 1.8, because sup{o*(g[f] | L(f) =0} =pB.Hence, j <n—1.

Let now apply the same order reduction procedure as in the proof of Theorem 1.8.
Let us use the notation vy instead of f, and ag.9, . ..,do,,—1 instead of ag, ..., a,—1. In
the general reduction step, we obtain an equation of the form

U,(cn_k) + ak,n—k—l(z)‘)](cn_k_l) + -+ ago(@)vg =0, (24)
where
n—Il—k ; L)
Ak = ag—1,1+1 t Z ( +:n+m)ak—1,l+1+m vf::i’ (25)
m=1
and the functions
d (Vi—1,141(2) d (vi_1(2)
v (2) = —(—) I=1,....n—k, vo=f w(z)= —(—)
dz\ vig_1,1(2) dz \vg_1(2)

determine a solutions base of (24) in terms of the preceding solution base. We may
express (1) and the jth reduction steps by the following Table. The rows correspond
to (24) for vy, ..., v}, i.e., the first row corresponds to (1), and the columns from n to
0 give the coefficients of these equations, while the last column lists the solutions with

aplf1<B.
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. . 1
n n-1 j j-1 0 o,lf1<p
Vo 1 ao,n—1 ap,j ao,j—1 aop,o0 V0,15 .-+, V0,j+1
V1 1 ai,j a1,j—1 ai,o V1,15 .-, V1,5
Vj-1 aj-1,j 4j-1,j-1 - 4j-1,0 Vj-1,1,V;-1,1
Vj aj,j aj,j—1 35,0 Vj1

By Lemma 3.6 and by (25), we see that in the second row, corresponding to the first
reduction step, m(r,a; ;) = O(In ¢ YnrPrte)), r & E holdsforl = j,...,n —2,
while 81 + & < Band m(r,a; j—1) # O(ng ' (InrA1 7)), r ¢ E.

Similarly, in each reduction step (25) implies that

m(r,ar ;) = O(lng~'(In rPitey). r¢E (26)

when! = j +1—k,...,n — (k + 1), i.e., for all coefficients to the left from the

boldface coefficient ay ;_, while m(r,a ;j_x) # O(In e Y(nrP1te)), r & E for

k=1,...,j. Inparticular, m(r,aj,0) # O(lnp~!(In rB+e)) for r ¢ E. We now apply

Lemma 3.5 to the coefficient a ;o with the constant B>, and obtain that T'(r,a;,0) >

Ine~'(nrP) and r — +o0, r € F, where F is a set of infinite logarithmic measure.
On the other hand, after the j th reduction step, we have by (25)

—j —j—1
p = py#—i=D "
751 Js1 Js1
aj0 = — —djin—j-1 —rrTdja )
vj’l vjﬁl vj’l

therefore m(r,aj0) = 0(1n ¢~ (n r’s""s)), r &€ E, by (26) and Lemma 3.6. Since
0(2 [vj,1] < B1, in view of Propositions 3.2 and 3.4 we have that

N(r,ajo) = O(lngo_l(lnrﬂ1+8)), r¢E,

where E is a set of finite linear measure. Therefore, T(r,a; o) = O(Ing~!(Inrf1F¢)),
r € E. By Lemma 3.3,

T(r,ajo) = 0(1H§0_1(1n(2r)’31+8)) =1Ing '(In rﬂl"'zs),

Choosing ¢ so that B; + 2¢ < B, we obtain the contradiction with our assump-
tion that 81 < B. Hence, there exist at most j linearly independent solutions (1) with

ollf]< B O

Proof of Theorem 1.10. Let f be a nontrivial solution of (1). We denote o7 := 0(/1, [f]

and 0p := 0(2 [@o]. The inequality o9 < o follows from Theorem 1.9 when j = 0 and
,3 = 09.
To prove the conserve inequality we need the following theorem.
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Theorem 4.3 ([7]). Let f be the solutions of (1) in C, where 0 < R < +o00 and let
1 < p < +oo. Then forall0 <r < R

n—1 2w r

mp(r, f)P SC Z//|aj(sei9)|n£/dsd9+l),

J=00

where C > 0 is a constant which depends on p and the initial value of f in a point z,
whereaj # 0 for some j = O0,...,n — 1, and where

27
mp(r )7 = 5 [ ey Pas.
0

It follows from Theorem 4.3 with p = 1, (8) and the definition of 0(2 -order that for
sufficiently large r we have

n—1 2w r
m(r, f) < C Zf/|a](se’9)|n Tdsdf + 1)
J=00
2w r
< C(n max la ~(sei9)|ﬁdsdl9 + 1) <
- 0<j<n-1 / -
0 0
-
<C max /(go_l((oo +¢) lns))n%f'ds < 5/(,0_1((00 +¢&)Ins)ds <
0<j=<n—1
0
< arfp_l((ao +e)lnr) < ¢ (oo + 2¢)Inr).
Since f is an entire function, we have
T ’
T(r, f) < ¢ ' ((00 +2¢)Inr), oI, /) I(r /) < 09 + 2s.
nr

By arbitrariness of ¢ we have that 01 < g¢. Thus, Theorem 1.10 is proved. O
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