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The Hardy space of complex functions defined on the Schrodinger orbit
of reduced (2d + 1)-Heisenberg group, generated by the Gauss density
function, is investigated. The Cauchy type integral formula is established
and radial boundary values for analytic extensions are decribed.

1 Main results

The Hardy type spaces for irreducible regular representations of locally
compact groups were introduced in [1]. In this work we concentrate on an
important similar case of such spaces, defined by the Schrédinger represen-
tation of reduced (2d + 1)-Heisenberg group Hss, 1. To be more precise,
the Hardy type space Hi consists of complex functions which are defined
on the unitary orbit G (under the Schrédinger representation Hayiq 3
(z,y,7) — Uy, over L?(R?)) of the Gauss density function h € L*(R?).
At that #, is defined to be the closure in L2(G) of all Hilbert-Schmidt

polynomials over L?*(R?), where ;1 means an invariant measure on G' which
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is uniquely determined by the Haar measure dx dy d7 on Hyy, 1. We estab-
lish the Cauchy type formula

C[f} (5) = /]H[ C(f, Uac,yﬂ'h)(f © Ux,yﬂ')(h) dx dy d7—7 é S BL2(]R’1)7 (1)

which for each function f € ”Hi produces its unique analytic extension
C[f] on the open unit ball Byzga) in L*(RY). Tt is proved that for every
function f € H’ the radial boundary values of analytic extension C[f] on
the orbit G are equal to f in some sense.

2 Reduced (2d+1)-Heisenberg group and its Schrédin-
ger representation

Let us consider the reduced Heisenberg group Hay 1 = R? x R? x T with
the multiplication

d
(z,y,€”) (u,v,€e") = (x +u,y + v, ei(“”)e%(x'”’y'“)) . Ty = Z Ty,
j=1

for all z,y,v,u € R and ¥,n € T := {e”: 9 €[0,2m)} , where z =
(r1,...,24), ¥y = (y1,...,94) € R? and i = v/—1. The Haar measure on
Hs4y1 coincides with the Lebesque measure and has the form dz dydr,
where dz := dzy ...dvg, dy := dy, ...dyq, dT = d¥/27 with 7 = 7 € T.
We refer to [2] about Heisenberg groups.

In order to define the Schrodinger representation of Hyy, 1 we need the
space L*(R?) of complex functions £: R? 3 (ty,...,t5) = t —> £(t) with

the scalar product (¢ | () 2ga) = fpa §()C(t) dt and the norm [|€]] ;2 gay =
(€| f)lL/QQ(Rd), where dt := dt; .. .dt,.

The Schrédinger representation U from Hag into .# [L*(R?)] has the
form

U{L’,y,q’: w(tl, e 7td) — Te%qupl(tl + xl)eiyltl . f(/}d(td _|_ xd)eiydtd

for all function 1 = ¢; ® ... ® ¥g € L2(R?) with 11,...,9q € L*(R) and
(t1, .., ta), v = (z1,...,24), ¥y = (Y1, ... ,9a) € R
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In order to continue we need the symmetric Fock space over the space
L*(R?). Consider its hilbertian n-th tensor power ®p L*(R?) with the norm

1/2
”WH@;;L?(RUZ) = (w| W>®/nL2(Rd where

(G®..0&L|G®...® Cn>®nL2 ey = (611 G paray -+ (€a | Ca) o me)

denotes the scalar product on ®;}L2(]Rd) defined on the total subset of
functions w = & ® ... ® & € @pL*(RY) with &,...,& € L*(R?). We
denote by F, [L2 (Rd)] the codomain of the orthogonal projector

1
P,: ®QL2(Rd) 56 R®...0& — EZfa(l) ®‘..®fg(n),

where ¢ runs through all n-elements permutations. We denote %" :=
P& ®...®&)if & = ... =&, Clearly, functions from F, [L*(R?)]
are symmetric under the permutation of d-dimensional variables. The
symmetric Fock space is defined to be the orthogonal sum

F=@ 7 [L’RY)] =Co L’R) @ F [L*RY)] @ ...

neZly

with the scalar product (¢ | w)> = > (¢, | wn>®g 12(ra) and the norm

[l = (@ [9)* for all § = 3702 (b, w = Yoo gwn € F and ¢y, wy €
Fn [L2(RY)].

To construct the orthogonal basis in F we first consider the Hilbert
space L*(R) of quadratically integrable complex functions of one variable
s € R. In L*(R) we fix the orthonormal basis

12 [ i
€ J(S) C e d o .

i(s) = Hi(s)=(—1)e® —e° R 7z
SOJ(S) % /—2Jj'7 j(s> ( ) € ds]e ) s € ) J € +>

where H; means the Hermitean polynomials. Then the orthonormal basis
of L*(R?) forms the system {¢j, ® ... ® @, ji,...,ja € Zs} (see [3]).
Now we consider the d-block indexes subset in Z%" of the form

23 = {la] = (@), ()] o) €2, j 1= (o) # o), Vi i}

with (o) = (a},...,a?) € Z%¢ and j,i = 1,...,n. In the subspace

Fn [LQ(]Rd)] the following system forms an orthogonal basis,

o= {Pali 0 @ 9085): () = s ) € 22, (9] =
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where 9(a;) 1= Pa1 ®. . .QPaa € L*(RY), [a] € Z9 and |(k)| == k1+. . .+ k.
Clearly, the system

o — {(0,...,0,&(@’3®...®¢ﬁknn)),o,o...>: [a] € Z4n, n€Z+}

forms an orthogonal basis in the symmetric Fock space F (see [3]). Remind
that

2kl k!
®k ®kn, _ M n _
[Py o m o] = 2w =n.
Now we consider the Gauss density function h = hy ®...®hg € L*(R?),
where every function h;(t;) = =452 = 1,....d, of the variable

t; € R belongs to L*(R), hence,
hiRES t = (ty,... ,tq) — h(ty, ... tg) =7 Wi Gt-+0/2

It is easy to see that ||| f2ge) = 1, so h belongs to the unit sphere Sp2(ga)
in L?*(R%). Consider its orbit under the Schrédinger representation

G = {Upysh: (z,y,7) € Hagr } =

4 i (e (gtag)?
:{gx,y,m = Eredvve 2 lontrttuata) &

which consists of complex functions g, ,,: R? 3 ¢ — g, ,(¢) belonging
to the unit sphere in L?(R%) and subsequently means the Gauss orbit.

To define on G a (Hygyq)-invariant measure let the closed unit ball
Bragay U Sp2gay be endowed with the weak topology of L*(RY), in which
it is a compact. Since Hyy, is a second countable locally compact group,
its Gauss orbit GG is a Borel subset in this compact. Recall that a Borel
measure 4 on the orbit G means (Hyg, 1 )-invariant if

/ (f 0 Uny) (9) dia(g) = / f(9)dulg), feIMG), (2,y.7) € Hanpn.
G G

Theorem 2.1. On the Gauss orbit G the following equality
[1@du) = [ (Folutydedydr,  feLic) @)
G Hag11

uniquely defines a (Haqyq)-invariant measure p which has the following
decomposition

[ 1@ dute) = 5= [ auto) [ s ao ®)

0
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Proof. First recall (see e.g., [4]) that for any locally compact second count-
able group & with a Haar measure y and its compact subgroup &, with
the Haar measure ¢ the equality

/ o) [ sty asto) = [oae,  rerie

holds. Put & = Hyy,1. Now let us equip the Gauss orbit G with the weak
topology of L?(R?). Then we can identify the Gauss orbit G' with the topo-
logical factor-space H2d+1/(’50, By = {(I, y,7) € Hogp1: Upyrh = h} is a
stationary subgroup in Hyy,q under the Schrodinger representation. The
stationary subgroup &, exactly coincides with the group unit (0,...,0,1)
in Hygyq. Hence, the above equality takes the form (2). The formula (3)
is a consequence of (2) and Fubini’s theorem (see [5]). O

3 Polynomial orthogonal systems on orbit

For any element ¢, € F, [L2(Rd)} uniquely assists the Hermitean form
Yr = (- | ¢n>®;;L2(Rd) which belongs to the Hermitean dual F [L*(R?)].

n

We can identify this form with the n-homogeneous Hilbert-Schmidt polyno-
mial ¥ : L2(R?) 2 & — (&) := (€% | ¢n>®gL2(Rd)' Now for each ¢ with
Uy € F, [L*(RY)] we assign the complex function

ha(¥n): G > g (%" | ¢n>®?;L2(Rd)

of the variable g = U, .h with (z,y,7) € Hagq1 belonging to the Gauss
orbit G and the mapping hy,: F, [L*(R?)] 3 ¢, — hy(¢n) € L2(G). The
following axillary statements show that the mapping h,, is well defined.

Lemma 3.1. For any n € N and (k) € Z7 such that |(k)| = n, and any
(1), ..., (ay)] € Z9" the inequality

o

holds, which transforms into the equality for (ay) = (0,...,0) € Z% and
(k) = (n,0,...,0).

2

dz dy dr < (%”)d

(Uaah) " | Palfiy @ 0 688))
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n

Proof. Let us use the following equality []

Upyrh N
j:1< wurh | SO(aj)>L2(Rd)
k kn .
<(Uz,y, ’ P, ( @;11) X...Q® 90((%171))>]_.' Since

d
i . (ty+ep?
<U~’vaﬁ‘fh ‘ 90(i)>L2 = TVt H/ eite™ T wj (t)dt, =

d
_ o oba H G o~ (@P 2iay+a?) /1

‘/2Jl jl' ’

we have the sequence of equalities

(@™ | Pty 2 0085),

2, 2 k1 2,2 kn
d _THY, 5 onad d _Ttvi o, 4 oval,
_( e 2 (¥ +y) ) < e” 2 (z) +yj) _
= I I T | | ; =
-1 2% 04!

Qo l |
paley 2onqy !

n 1 km n k:m
o ein(zi;y%) H (x% —|— y%)am e n($d+yd) H ‘Td + y ) "L
N 29m L | ' '
m=1 m’

205l |
m=1

Now using the facts that

Ji n | +0o0 m
L) =TT 2 [
/0 111 H(]ﬂ)kl 0

n

+o0 m 1
H )" / rall) dg < —
tnpm n

=1

with m = Z]zkl and that

/+OO/+oo p+s dpd5_4/+°°/ f dqdﬁ—27 +Oof()

0

with p? = 2¢ - cos? ) and s? = 2¢ - sin® ¥, we finally obtain

o

(Useh) ™" | Pl @ ... @ ¢a’1’3)>

2
dx dy dr =
_F
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km

d n
n(a2 +y] 2 + 2
:/ G H( yﬂj) ) dxdyd7<<”).
Hoat1 joq 20‘ma ! n

1

If (a7) = (0,...,0) € Z%¢ and (k) = (n,0,...,0) then the above inequality
transforms to the equality. O]

The next statement gives an estimation for any ¢ € F; [L*(R%)].

Lemma 3.2. For any 1,, € F, [LQ(Rd)] the following inequality holds

/H;IQd+l

Proof. Since {P (gog?) ®...Q0 90®k”)' (k1,... ky) € Z%,|(k)] = n,

[(a1),..., ()] € Zjir”} forms the orthogonal basis in F,, [L*(R?)], we can
consider the Fourier decomposition of ,:

n 2 2m\ 4
<(Uw7y,7-h)® ‘ wn>}_‘ d.r dy dT S n‘(;) H¢n”?®2L2(Rd)

|
_ ®k Rk, n

aEZjl_”, [(k)|=n

with ||1pn‘|®nL2 @) = 2 |Bail?, where a = [(a1),..., ()] and (k) =
(k1,...,k,). It follows that

/sz+1 <
2

S n'/H (Z |Ba k|‘< zyT ®” (801(8;1611) ... @%fn )> D dl’dyd’]’ =
2d+1
=n! Z |ﬁak||ﬁzm|/

a,k,im H2d+1

()™ | Pale 0 so%$">>f

2

(Upyrh) ™" | ¢n>f dz dy dr <

X

i 005

X dx dy dr.

Using the Cauchy-Schwartz inequality for the integral we get that

o

X

(Useh)™" | Pl @ ... @ ¢%’1’3)>I
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®Xm Mn
X < ey P"(So(z'l)l@"'@@gn)»; drx dy dr <
2 1/2
®Xn k -
< (/ (Usyrh) ™" | Pa (%0&3@---@90%»; d:z:dyd7> X
Hogt+1
2 1/2
@n Xm RMmp,
x(/ xyTh) | Pn(SO(il)l@-"@QO(z’n) )>; dxdydT) <
H2d+1

IN

Cr)-

Finally, using the Cauchy-Schwartz inequality one more time, i.e.

S laallinl < (3 osf ) (S 15) " = Wl ey

a,k,i,m

we achieve the required inequality. O

Consider the following closed subspaces and their hilbertian orthogonal
sum F,, := F, [LQ(]Rd)] okerh,, ' := C®F ®F,®..., where ker h,, means
the kernel of h,. Now let us introduce the denotations h, := h,,/||hn| and
@Zn = %n(@/zn) and consider the corresponding linear mapping

hiFogp=Y th—1:=> v,
nel4 neEly
Let H? = %n(Fn) and H? = E(F) mean codomains in L7(G) of the
mapping }~Ln and 71, respectively.

Theorem 3.1. The mappings h and En have the following properties:
(i) hy, is an isometry between F, and its codomain H2.

(ii) h is an isometry between F and H...
(iii) the orthogonal decomposition H;, = COHI OH; D HZ @ ... holds.

Proof. Lemma 3.2 implies that the operator h, is bounded. It follows
that

/ () dp = / (65 0 Uy o) (W)@ © g ) (B) dpt(Usy o)
G G

is an Hermitean continuous form on F),, which is linear by w, and an-
tilinear by t,. So, there exists a bounded operator A, € £ (F,) for
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which (w, | Aptbn) 7 = [o hu(tn)hn(w,) dpe. Using the same technique as
in [1] we show that A, commutates with the diagonal nth tensor power
of Schrodinger’s representation {USr. = Uz ® ... ® Uz g7: (2,5,7) €

H2d+1}. Applying the (Hag,q)-invariancy of the measure p on the Gauss
orbit G we obtain

(wn | (An o Uszgz)tn) -
- /G (Usgorh)™ | USD ) A Uay )™ | o) (Ui ) =

- /G <(Ux,y,rh)®n|¢n>f<(Ux,y,Th) | U ey > d(Uyy o) =
_ <wn | (U2 o An)¢n>f,

Since for any n € N the set { UpyR)E" 2 (2,y,7) € HQdH} is total in
F,, due to its definition, the representations Ug% - are irreducible over F,.

Via to the well-known property [6, Theorem 21.30] the operator A, is

proportional to the identity operator 1z, on F, ie., A, |p,= R 721p, for
some N? € C. Hence, we have

(o ) =3 [l )i all = s a()lsz = - ()

Unllra

Finally, applying Theorem 2.1 for all v, € F,, and w,, € F},, we get

[E— 1 - 2
fi o ) i = 5= [ o d [ e =
B { O n#£Em
N <wn | 77ZJn>]: ‘n=m.

Hence Ay, () L By (wy) if n # m and the orthogonal decomposition (iii)
holds. O

4 Cauchy type formula for Gauss orbit
Note that the lemmas directly imply the estimation ||h,| < 4/n! (%T)d and
the equality

ny |12 n n 2 = 27 ’
a0 = [ e 117 oy = (25



324 M. Oleksienko

Though finding the exact value of ||h,|| is not an easy task we can give
another estimation for ||h, || which will be useful for 8,,. It easy to see that
h®" € F, and ||h®"||z = 1. It follows that the following estimation holds
27r>d/2

[Anll = sup ||h (¥n) HL?(G) th(h®n)HLﬁ(G) - (7
||1/’n||]-‘*

From (22)%% < ||ha|] < (n)Y2(2Z)"? it follows that /L () < R, <

(2 ) The fact that lim {/N2 < lim 4/ (ﬂ)d = 1 justifies that we can
n—o0

n—00 2m
mean
C (& Usyrh) = > Ni(gwm,wh);(w > RZ(E | (Uyyrh)®") 5 =
ne€Z4 neZ4
5Ty

(5)

with § € Bragay and (z,y,7) € Hagy1, as a generalization of the Cauchy
kernel. Since U,y +h € Sp2ge) for all (z,y,7) € Haqyr and above power
series is convergent for all [|{|| 2rae) < 1, the kernel C(¢, ) is an analytic
L>°(Hg1)-valued function by the variable § € Bz gay (see [5]).

Theorem 4.1. The integral operator

C[f](f) = /]HI 0(57 Ux,y,Th)(foULy,T)(h) dx dy dT, f € Hi, 5 € BLQ(]Rd)a

belongs to L (M,). The function C.[f]: G 3 & — C[f](r€) belongs to H,

and
1/2

iz = s ([ 1C100rdne)

Forany f =3, fn€ H? with f, € H, the integral transform C[f] is a
unique analytic extension of f on the open ball Bragay for which its radial
boundary values on G are equal to f in the following sense

lim/G |CL[f] - f‘Qdu =0, re0,1).

r—1
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Proof. Use the short notation gofi(]k) =P, (goakll) ®.. .®<pakn")) with |(k)| =
n. All such elements gp[ } ) have been previously identified with ®,,. For
gp[ag ) e ®,, we denote go[ h ( ®(k ) Substituting elements w,, = goigk)

and 1, = ] ) from ®,, with dlfferent indexes in the equality (4) we get

/ Balo dun = (wid” 1 op ), = 0.

So, the system QEESJ) with all go[%k) € ®,, forms an orthonormal basis in H2.

We can write the Fourier expansion %" = Z@(g(k)@ (&om | wﬁgk)>F<pi§k)
[a] "

for any element £*" € F,, [L*(R?)]. Using this we have

Co(€, Unygrh) 1= N2 | (Uny 1)), = " Z @<§>(§/r)@(zfx,yﬁh),

where 7 = ||{|| 2(ray. It follows that

5 nyT Z Z Sp[a] 6/ fo(]( z,Y,T ):

nEZy ‘[ﬁ(]k)eq)n
= Z r"Cy (&)1, Upy,rh).
n€Z+

Now Theorem 3.1 implies that

~(k
/ EO‘]) (Uz,yﬂ'h) Cn (§/T7 U:c,y,Th) du(Uz,y T ) = 90[0[] (f/?”) .
Since F{x with all ¢{"
operator with kernel C,, produces the identity mapping over H?2.
Let f = Zn€Z+ fn € ”Hi with f, € H2. Using that f, L C,, if n #m
in L2 (G) we obtain

Z/ foyT fn( T,T )dﬂ(UzyTh) =

neEly

_ /G C(6,Unyoh) f (Usyoh) dit(Usyr )

€ ®,, form an orthonormal basis in H?2, the integral
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for all £ € G. It follows that the series C[f](£) = 3,5, C[fa](§) with
CLE(E) = /G (€. Unyh) fu(Usgirht) dpt(Us o) =
- /G Co (/7 Ung ) fo (Usywh) dpp(Ung o) = 17 Fu(€/7) = i)

is convergent in #, by the variable £/r € G, uniformly by r € [0, €] with
0 <e <1 Since Cp, L f, and f, L f, if n# m in L2(G), we have

Iy |

).

for all » < 1. It follows that

du(§) =

Z Tn/GCn (5, U;r’yﬂ—h)fn(U:l‘,y,Th) dﬂ(Ur,yﬁh)

neZy
2

D fal&)] du©) = || D fa
neZy neZy

2

n 2
= Z r? an“Lﬁ(G)

Lﬁ (G) n€Z+

rel0.1)

2 n
sup [ CUOF dule) = s 3l = 1130
G ref0,1) Z, " "

We can apply the Cauchy-Schwarz inequality which implies

1 2 | fallge
CUAIZ, . < —( 12 ) = LnIhE)
H [f]HLM(G) = m nEZ%—Hf ||L3(G) 1,2
for all f € H:. Therefore the operator C[f] belongs to Z(H.,).

Now we will use that C'(&,-) is an analytic L>°(Hagy1)-valued function
by £ € Bp2(gey. Then in view of |7, Theorem 3.1.2| the function C'[f] is also
analytic by £ € Bpa(ga). Applying the orthogonal property once again, we
have

2 n
Lémm—ﬂwziyﬂ—mm@@%o
neZy

if » — 1. Thus, the theorem is completely proved. O
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IIPOCTOPU XAP/I HA 3BEJEHUX I'PYITIAX
TEMN3EHBEPTA
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Pozrisimaerbes mpoctip Xap/i KOMIUIEKCHUX (DYHKITIH, BUBHAUEHUX Ha
op6iti HIpesinrepa 3Begenol (2d + 1)-sumipnoi rpymu eiizenbepra, mopo-
mkenol dpynkiiiero ['aycca. Hapejena interpasnbia dpopmysta tuiy Korri ta
JIOBEJICHO iCHYBaHHS TPAHUYIHUX 3HAYCHD JIJIsd AHAJTITUIHAX MTPOJIOBXKEHD.





