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It is shown that the sets of monotonic predicates on domains with val-

ues in a completely distributive quantale are free completely distributive

idempotent semimodules over these domains. Idempotent dual pairs and

conjugate operators are also constructed.

Introduction

Domain theory is a branch of mathematics which was founded by Dana
Scott to apply methods of order theory, topology, logic to computer sci-
ence, first of all to denotational semantics of lambda caclulus. Its key idea
is to represent “partial” or “incomplete” information on the state of a sys-
tem or on the result of computations as an element of partially ordered
set, in which the elements are ordered by increasing of precision or special-
ization. On mathematical aspects of domain theory, see the perfect book
“Continuous Lattices and Domains” [1], which is a successor to the famous
“Compendium on Continuous Lattices”.
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This theory is naturally linked with fuzzy sets and fuzzy predicates [2],
which are in fact mappings from/to domains, although in most publications
the considered scale is a subset of the set of reals. The aim of the present
paper is to uncover some relations between lattice-valued monotonic pred-
icates on domains, idempotent linear algebra and idempotent functional
analysis.

1 Semimodules of monotonic predicates

Throughout this paper, if f, g are functions with a common domain, α is
a constant, and ∗ is a binary operation, then we denote by f ∗ g, α ∗ f and
f ∗α the functions with the same domain obtained by pointwise application
of the operation ∗ (provided it is defined for the corresponding values). In
the sequel supp and infp for a family of functions with a common domain
to a poset will denote the pointwise suprema and infima, respectively. For
a subset A of a poset X, we denote by A↑ the subset {x ∈ X | a 6
x for some a ∈ A}. The least and the greatest elements of a poset (if they
exist) are commonly denoted by 0 and 1, respectively.

See [1] for basic definitions and facts on partially ordered sets, including
continuous semilattices and lattices. Here we shall recall only few defini-
tions. A poset is directed complete (dcpo for short) if it has suprema for
all directed non-empty sets. An element a approximates b or is way below
b in a poset X, which is written as a � b, if, for each directed subset
C ⊂ X such that b 6 supC, there is c ∈ C such that a 6 c. If such is
valid for all (not necessarily directed) subsets C ⊂ X, then a is said to
be way-way below b, written a ≪ b. A poset X is called continuous if,
for each b ∈ X, the set of all a � b is directed and has b as its lowest
upper bound. A directed complete continuous poset is called a domain.
A continuous semilattice is a domain that has pairwise meets. The Scott
topology on a poset X is the least topology such that all lower sets C that
are closed under directed suprema are closed. A mapping between dcpos
is Scott continuous, i.e. continuous w.r.t. the Scott topology on the both
sets, if and only if it is isotone and preserves all suprema of directed sets.
The lower topology on X is the least topology such that the sets {a}↑
are closed for all a ∈ X. The join, i.e. the least topology that contains
the Scott and the lower topologies, is called the Lawson topology.
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We shall also use basic notions of denotational semantics of program-
ming languages. Consider a system or a state of a computational process.
All possible (probably incomplete) portions of information we can have
about it form a domain of computation D [3]. This set carries a partial or-
der 6 which represents a hierarchy of information or knowledge: the more
information contains an element (i.e. the more specific/restrictive it is),
the higher it is. It is also often required, that there is a least element 0 ∈ D

(no information at all), and for all a and b in D there is a meet a∧b, which,
e.g. can be (but not necessarily is) treated as “a or b is true”. See the latter
reference for more details, in particular for explanation why it is natural
to require that D is a continuous meet-semilattice with a least element.

In the sequel L will be a completely distributive lattice [1]. By a result
of Raney [4], a complete lattice is completely distributive if and only if
each element is the supremum of all elements way-way below it. This is
equivalent to L being a compact Hausdorff distributive Lawson lattice with
some topology (which in this case coincides with the Lawson topology) [1,
Proposition VII-2.8]. A topological lattice is said to be Lawson if at each
point it possesses a local base consisting of sublattices. Then the same is
true for Lop. We denote by 0, 1, ⊕, and ⊗ the bottom element, the top
element, the join, and the meet in L, respectively. The elements of this
(arbitrary, but fixed throughout the paper) lattice will be used to express
truth values. The operation ⊕ is the disjunction, but the conjuction does
not necessarily coincide with ⊗.

Following [5], for a semilattice D we call the elements of the set [D →
Lop]op L-fuzzy monotonic predicates on D (here [A → B] stands for the set
of all Scott continuous mappings from A to B). For m ∈ [D → Lop]op

and a ∈ D, we regard m(a) as the truth value of a, hence it is required
that m(b) 6 m(a) for all a 6 b. The second op means that we order
the fuzzy predicates pointwisely, i.e. m1 6 m2 iff m1(a) 6 m2(a) in L (not
in Lop !) for all a ∈ D. We denote M [L]D = [D → Lop]op, and, for D with
a least element 0, consider also the subset M[L]D ⊂ M [L]D of all normalized
predicates that take 0 ∈ D (no information) to 1 ∈ L (complete truth).
Observe that M[L]D is a complete sublattice of ⊂ M [L]D.

It follows from [6, Theorem 4] (although called “folklore knowledge” in
[5]) that, for a domain D and a completely distributive lattice L, the set
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[D → Lop] is a completely distributive lattice, hence this is also valid
for M [L]D. If D possesses a least element, then M[L]D is a completely
distributive lattice as well.

For an element d0 ∈ D, we denote by η[L]D(d0) the function D → L

that sends each d ∈ D to 1 if d 6 d0 and to 0 otherwise. It is easy to see
that η[L]D(d0) ∈ M[L]D ⊂ M [L]D, and δDL = η[L]D(0) is a least element of
M[L]D.

Lemma 1.1 ([7], 1.1). The mapping η[L]D : D → M [L]D is Scott contin-
uous and lower continuous.

Remark. For D with a bottom element, M[L]D is a complete sublattice of
M [L]D, hence we obtain that η[L]D is Scott and lower continuous also as
a mapping : D → M[L]D.

Therefore we consider D as a subspace both of M[L]D and M [L]D w.r.t.
the Scott and the lower, hence w.r.t. the Lawson topologies on the both
sets. If D is a continuous semilattice, it is also a lower subsemilattice of
M[L]D and M [L]D.

Infima and finite suprema in the complete lattices M [L]D and M[L]D

of functions are taken pointwise, whereas arbitrary suprema are described
by the following easy, but useful statement. For a function f : D → L, let

fu(b) = inf{f(a) | a ∈ D, a � b}, for all b ∈ D.

Observe that fu is always a monotonic predicate. Moreover [8, Lemma I.4]:

Lemma 1.2. For an antitone function f : D → L, the function fu is
the least monotonic predicate f ′ such that f 6 f ′ pointwise.

Hence, for a family F ⊂ M [L]D (or F ⊂ M[L]D), we have inf F =

infpF , supF = (suppF)u. For finite F , the latter u can be dropped.
We use notation ⊕̄ and ⊗̄ for joins and meets in M [L]D and M[L]D.
In the sequel we shall additionally require that L be a unital quan-

tale [9], i.e. there exists a binary operation ∗ : L × L → L such that 1 is
a two-sided unit and ∗ in infinitely distributive w.r.t. supremum in both
variables, which is equivalent to being continuous w.r.t. the Scott topol-
ogy on L. Observe that, for such ∗, its infinite distributivity also w.r.t.
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infimum means the continuity w.r.t. the Lawson topology on L. Recall
that we treat ⊕ as a disjunction, and ∗ will be a (possibly noncommuta-
tive) conjunction in an L-valued fuzzy logic [10, 11]. The Boolean case is
obtained for L = {0, 1}, ⊕ = ∨ and ∗ = ∧.

Recall that a (left idempotent) (L,⊕, ∗)-semimodule [12] is a set X

with operations ⊕̄ : X × X → X and ∗̄ : L × X → X such that for all
x, y, z ∈ X, α, β ∈ L :

(1) x ⊕̄ y = y ⊕̄x;
(2) (x ⊕̄ y) ⊕̄ z = x ⊕̄(y ⊕̄ z);
(3) there is an (obviously unique) element 0̄ ∈ X such that x ⊕̄ 0̄ = x

for all x;
(4) α ∗̄ (x ⊕̄ y) = (α ∗̄ x) ⊕̄(α ∗̄ y), (α⊕ β) ∗̄ x = (α ∗̄ x) ⊕̄(β ∗̄ x);
(5) (α ∗ β) ∗̄ x = α ∗̄ (β ∗̄ x);
(6) 1 ∗̄ x = x; and
(7) 0 ∗̄ x = 0̄.
Observe that these axioms imply that (X, ⊕̄) is an upper semilattice

with a bottom element 0̄, the order is defined as x 6 y ⇐⇒ x ⊕̄ y = y,
and α ∗̄ 0̄ = 0̄ for all α ∈ L. The operation ∗̄ is isotone in both variables.

Hence an (L,⊕, ∗)-semimodule is an analogue of a vector space. Simi-
larly, analogues exist for linear and affine mappings. A mapping f : X → Y

between (L,⊕, ∗)-semimodules is called linear if, for all x1, . . . , xn ∈ X and
α1, . . . , αn ∈ L , the equality

f(α1 ∗̄ x1 ⊕̄ . . . ⊕̄αn ∗̄ xn) = α1 ∗̄ f(x1) ⊕̄ . . . ⊕̄αn ∗̄ f(xn)

is valid. If the latter equality is ensured only whenever α1 ⊕ . . .⊕ αn = 1,
then f is called affine. Observe that an affine mapping f preserves joins,
i.e. f(x1 ⊕̄x2) = f(x1) ⊕̄ f(x2) for all x1, x2 ∈ X. An affine mapping is
linear if and only if it preserves the least element.

We call a triple (X, ⊕̄, ∗̄) a continuous (L,⊕, ∗)-semimodule if (X, ⊕̄, ∗̄)
is an (L,⊕, ∗)-semimodule such that (X, ⊕̄) is a domain, and ∗̄ is infinitely
distributive w.r.t. supremum in the both variables (hence is Scott contin-
uous). Observe that such (X, ⊕̄) has a least element, a greatest element,
and suprema for all subsets, therefore is a continuous lattice. If the poset
(X, ⊕̄) is a completely distributive lattice, then we call (X, ⊕̄, ∗̄) a com-
pletely distributive (L,⊕, ∗)-semimodule. This is equivalent to X carrying
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a compact Hausdorff topology such that the upper semilattice (X, ⊕̄) is
a distributive Lawson lattice and the operation ∗̄ : L × X → X is lower
semicontinuous. Therefore we use an equivalent term “compact Hausdorff
Lawson (L,⊕, ∗)-semimodule”.

Let D be a domain. For m ∈ M [L]D, we define α �̄m to be a least
predicate m′ : D → L such that α ∗ m(b) 6 m′(b) for all b ∈ D, i.e.
α �̄m = (α ∗m)u. Then:

(α �̄m)(b) = inf{α ∗m(a) | a ∈ D, a � b}.

If D has a bottom element, then for m ∈ M[L]D we need to “adjust”
the result:

(α ~̄m)(b) = (α �̄m)(d) ⊕̄ δDL (d) =

{
(α �̄m)(b), b 6= 0;

1, b = 0.

Proposition 1.1 ([7], 1.7). The triples (M [L]D, ⊕̄, �̄) and (M[L]D, ⊕̄, ~̄)

are compact Hausdorff Lawson (L,⊕, ∗)-semimodules.

We shall consider several categories [13], which can be equivalently
defined either in a topological fashion or using order-theoretical properties.
In the sequel “semilattice” means “meet-semilattice” if otherwise is not
stated, and “semilattice morphism” is a mapping between semilattices that
preserves finite meets.

The category of all domains and their Scott continuous mappings is
denoted by Dom. Its full subcategory with the objects being all domains
with bottom elements is denoted Dom⊥. If we also require that bottom ele-
ments are preserved by the morphisms, the subcategory Dom0 is obtained.
This notation style is applied also to the following categories.

The category that consists of all continuous semilattices and Scott con-
tinuous semilattice morphisms is denoted by CSem. The wider category of
all continuous semilattices and Scott continuous mappings, which are not
necessary meet-preserving, is denoted by CSem↑. Let CSem0 and CSem0↑

be the subcategories of CSem and CSem↑, which arise when we take only
the semilattices with bottom elements and their 0-preserving mappings.
Finally, we denote by CSem⊥ the category of all semilattices with bot-
tom elements and their Scott continuous mapping, not necessary meet- or
0-preserving.
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Recall that by the Fundamental Theorem on Compact Semilattices [1,
Theorem VI-3.4] a continuous semilattice is complete if and only if it, with
some compact Hausdorff topology, is a topological semilattice with local
bases consisting of subsemilattices at all points, or a compact Hausdorff
Lawson semilattice for short; then the topology in question coincides with
the Lawson topology. Note that all such semilattices have bottom elements.

Therefore we denote by LLaws the category of all compact Hausdorff
Lawson lower semilattices and their continuous meet-preserving mappings,
or, equivalently, of all complete continuous semilattices and all their map-
pings that preserve all infima and directed suprema. It is a rather narrow
category, hence let LLaws↑ be the category with the same objects, but
Scott continuous mappings as morphisms. Its subcategory that contains
only 0-preserving Scott continuous mappings is denoted by LLaws0↑.

Following this notation style, we denote by (L,⊕, ∗)-CSMod↑ and
(L,⊕, ∗)-CSAff↑ the categories that consist of all continuous (L,⊕, ∗)-
semimodules and their Scott continuous respectively linear and affine maps,
which implies preservation of all suprema. By taking only completely dis-
tributive (L,⊕, ∗)-semimodules, we obtain the full subcategories
(L,⊕, ∗)-LwSMod↑ and (L,⊕, ∗)-LwSAff↑, respectively.

Proposition 1.2. For each Scott continuous mapping ϕ : D → K from
a domain to a continuous L-semimodule there is a unique extension Φ :

M [L]D → K to a morphism in (L,⊕, ∗)-CSMod↑.

Proof. For all α ∈ L, d ∈ D the mapping α ∗ η[L]D(d) : D → L is
a monotonic predicate, hence α ∗ η[L]D(d) = α �̄ η[L]D(d). Observe also
that m ∈ M [L]D is the least upper bound of the set {m(d) ∗ η[L]D(d) | d ∈
D}.

Therefore if a required extension Φ exists, it must be determined by
the formula

Φ(m) = sup{Φ(m(d) �̄ η[L]D(d)) | d ∈ D} =

= sup{m(d) �̄Φ(η[L]D(d)) | d ∈ D} =

= sup{m(d) �̄ϕ(d) | d ∈ D}

for all m ∈ M [L]D.
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Since the suprema in M [L]D are calculated pointwise, it is easy to see
that the mapping Φ preserves arbitrary suprema. To show ∗-uniformity,
extend Φ by the above formula to the set of all antitone functions m :

D → L.
Obviously m 6 mu implies Φ(m) 6 Φ(mu). On the other hand,

for all k ∈ K, k � Φ(mu), there are d1, . . . , dn ∈ D such that k �
mu(d1) �̄ϕ(d1) ⊕̄ . . . ⊕̄mu(dn) �̄ϕ(dn). Let d′1 � d1, . . . , d′n � dn, and
each d′i converge to the respective di. Then by the Scott continuity of ϕ
and �̄ we infer that

mu(d1) �̄ϕ(d′1) ⊕̄ . . . ⊕̄mu(dn) �̄ϕ(d′n) → mu(d1) �̄ϕ(d1) ⊕̄ . . . ⊕̄mu(dn) �̄

�̄ϕ(dn),

hence there are d′1 � d1, . . . , d′n � dn such that

k 6 mu(d1) �̄ϕ(d′1) ⊕̄ . . . ⊕̄mu(dn) �̄

�̄ϕ(d′n) 6 m(d′1) �̄ϕ(d′1) ⊕̄ . . . ⊕̄m(d′n) �̄ϕ(d′n) 6 Φ(m).

Thus by the continuity of K we obtain Φ(m) > Φ(mu), and therefore
Φ(m) = Φ(mu).

Now, for all α ∈ L, m ∈ M [L]D:

Φ(α �̄m) = Φ((α ∗m)u) = Φ(α ∗m) = sup{(α ∗m(d)) �̄ϕ(d) | d ∈ D} =

= sup{α �̄(m(d) �̄ϕ(d)) | d ∈ D} = α �̄ sup{m(d) �̄ϕ(d) | d ∈ D} =

= α �̄Φ(m).

Proposition 1.3. For each Scott continuous mapping ϕ : D → K from
a domain with a bottom element to a continuous L-semimodule there is
a unique extension Φ : M[L]D → K to a morphism in (L,⊕, ∗)-CSAff↑.
It is linear, i.e. it is a morphism in (L,⊕, ∗)-CSMod↑, if and only if ϕ

preserves the bottom element.

Proof is quite analogous, except that the required extension is deter-
mined by the formula

Φ(m) = ϕ(0) ⊕̄ sup{m(d) �̄ϕ(d) | d ∈ D}

for all m ∈ M[L]D.
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Remark. Formally speaking, the two latter statements mean that M [L]D

(resp. M[L]D) is a free object over D. Both the domain and the target
categories can be chosen differently because M [L]D and M[L]D are com-
pletely distributive lattices, and “forgetting” the multiplication makes them
not only domains, but also continuous, and even complete, semilattices.
Therefore we have the following three “polyvariate” propositions, which are
equivalent to the two previous ones.

Proposition 1.4. For an object D of the category Dom (or of CSem↑, or
of LLaws↑) the continuous L-semimodule M [L]D is a free object over D

in(L,⊕, ∗)-CSMod↑ (or in (L,⊕, ∗)-LwSMod↑).

Proposition 1.5. For an object D of the category Dom⊥ (or of CSem⊥,
or of LLaws↑) the continuous L-semimodule M[L]D is a free object over D

in (L,⊕, ∗)-CSAff↑ (or in (L,⊕, ∗)-LwSAff↑).

Proposition 1.6. For an object D of the category Dom0 (or of CSem0↑,
or of LLaws0↑) the continuous L-semimodule M [L]D is a free object over
D in (L,⊕, ∗)-CSMod↑ (or in (L,⊕, ∗)-LwSMod↑).

2 Dual pairs and conjugate operators

For the quantale L = (L,⊕, ∗), we denote by L′ the quantale (L,⊕, ∗′)
that differs only in the multiplication: α ∗′ β = β ∗ α for all α, β ∈ L.

A little modifying and restricting definitions in [14], we call a pair of
an L-semimodule K and an L′-semimodule K a predual pair if there is
a multiplication · : K ×K ′ → L that is distributive and Scott continuous
in each variable (hence is jointly Scott continuous), and (α ~̄ k) ·(β ~̄ k′) =

α ∗ (k · k′) ∗ β for all k ∈ K, k′ ∈ K ′, and α, β ∈ L.
We say that · separates the elements of K if, for all k1, k2 ∈ K, k1 66 k2,

there is k′ ∈ K ′ such that k1 · k′ 66 k2 · k′; similarly for separation of
the elements of K ′. If · separates the elements of the both semimodules K
and K ′, we say that they form a dual pair.

See the latter citation for examples of predual and dual pairs, as well as
for an example that K ′ and · such that K, K ′ form a dual pair exist even
not for every complete L-semimodule K. The most obvious dual pair is
K = K ′ = LI , where I is an arbitrary index set, α ~̄(ai)i∈I = (α ∗ ai)i∈I in
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K, β ~̄(bi)i∈I = (bi ∗β)i∈I in K ′, (ai)i∈I · (bi)i∈I = sup{ai ∗ bi | i ∈ I}. Here
we shall construct predual and dual pairs that consist of semimodules of
monotonic predicates.

Let D, D′ be continuous semilattices with bottom elements. Recall
that M[L]D is a continuous L-semimodule, and M[L′]D

′, which in fact is
the same as M[L]D

′ but with different multiplication, is a continuous L′-
semimodule.

Fix a Scott continuous mapping P : D ×D′ → L such that P (d, 0) =

P (0, d′) = 0 for all d ∈ D, d′ ∈ D′, and define a “scalar-like” product by
the formula:

(m,m′)∗P = m ·m′ = sup{m(d) ∗ P (d, d′) ∗m′(d′) | d ∈ D, d′ ∈ D′}

for all antitone functions m : D → L, m′ : D′ → L. We use the second
notation if P and ∗ are easily guessed. Using arguments similar to used in
the proof of Proposition 1.2, we obtain the following lemma.

Lemma 2.1. For all antitone functions m : D → L, m′ : D′ → L

the equality (mu,m′)∗P = (m,m′u)∗P = (m,m′)∗P is valid.

Corollary 2.1. For all m ∈ M[L]D, m′ ∈ M[L]D
′, and α ∈ L we have

(α ~̄m,m′)∗P = α ∗ (m,m′)∗P .

Of course, the analogous statement holds for the second argument.
Since joins in M[L]D and M[L]D

′ are calculated argumentwise, the in-
troduced multiplication is distributive in the both arguments. Therefore
Lemma 2.1 implies infinite distributivity, hence separate and joint Scott
continuity of the multiplication of monotonic predicates.

Now the following statement is at hand.

Proposition 2.1. Let D, D′ be continuous semilattices with bottom el-
ements and P : D × D′ → L a Scott continuous mapping such that
P (d, 0) = P (0, d′) = 0 for all d ∈ D, d′ ∈ D′. Then M[L]D and M[L′]D

′,
together with the multiplication (−,−)∗P : M[L]D×M[L′]D

′ → L, constitute
a predual pair.

Now we consider a “kernel” P : D × D′ → L such that, aside from
the previously required properties:
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(1) P is Scott continuous;
(2) P (d, 0) = P (0, d′) = 0 for all d ∈ D, d′ ∈ D′;

the following is satisfied:
(3) P attains only the values in 2 = {0, 1} ⊂ L and is distributive w.r.t.

∧ (not ∨!) in the both variables; and
(4) P separates the elements both of D and D′, i.e., if P (d1, d

′) =

P (d2, d
′) for some d1, d2 ∈ D and all d′ ∈ D′, then d1 = d2; analogously for

the second argument.
The binary relation {(d, d′) ∈ D × D′ | P (d, d′) = 0} for such P

was called a separating polarity in [15]; it was also proved there (Propo-
sition 2.6) that, for each continuous meet-semilattice D with a bottom
element, there is a unique up to isomorphism continuous meet-semilattice
D′, with a bottom element, such that there is P : D × D′ → {0, 1} with
the above properties. Namely, D′ = D∧, where D∧ is the ordered by in-
clusion set of all Scott open filters in D, including ∅, but excluding D

itself, hence none of elements of D∧ contains the bottom element of D.
Recall that a set F ⊂ D is a Scott open filter if and only if F is a closed
under finite meets upper set such that, for any directed subset A ⊂ D

such that supD ∈ F , the intersection A ∩ F is non-empty. A “canonical”
multiplication P : D ×D∧ → 2 is determined by the formula

P (d, F ) =

{
0, d /∈ F,

1, d ∈ F,
d ∈ D,F ∈ D∧.

Proposition 2.2. Let D, D′ be continuous semilattices with bottom ele-
ments and P : D × D′ → L satisfy the above conditions (1)–(4). Then
M[L]D and M[L′]D

′, together with the multiplication (−,−)∗P : M[L]D ×
M[L′]D

′ → L, constitute a dual pair.

Proof. We can assume that D′ = D∧. Only separation of points is to
be verified. Let m1 6= m2, e.g. m1(d) 66 m2(d) for some d ∈ D. Since
m2 : D → Lop is Scott continuous, there is d0 � d in D such that m1(d) 66
m2(d0) > m2(d), which implies d0 6= 0. By Proposition I-3.3 [1], there is
an open filter F 3 d such that d0 � b for all b ∈ F .

Let m′ : D∧ → L be defined by the formula

m′(d′) =

{
1, d′ 6 F,

0, d′ 66 F,
d′ ∈ D∧.
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Then
(mi,m

′)∗P = sup{mi(b) | b ∈ F}, i = 1, 2,

therefore

(m1,m
′)∗P > m1(d) 66 m2(d0) > sup{m2(b) | b ∈ D, d0 � b} > (m2,m

′)∗P ,

hence (m1,m
′)∗P 6= (m2,m

′)∗P .

Assume that K1, K2 are L-semimodules, K ′
1, K

′
2 are L′-semimodules,

multiplications · : K1 ×K ′
1 → L and · : K2×K ′

2 → L are such that K1, K
′
1

and K2, K
′
2 are dual pairs, and A : K1 → K2 is a linear mapping. It is

natural to call a linear mapping A′ : K ′
2 → K ′

1 the (Hermitian) conjugate
to A if Aa ·a′ = a ·A′a′ whenever a ∈ K1, a ∈ K ′

2. The separation property
implies that, if a conjugate for a given A exists, it is unique. Hence we
write A′ = A∗ in this case, and obviously A∗∗ = A. It is also immediate
that, for the composition A◦B of linear mappings with conjugates A∗ and
B∗, respectively, a conjugate exists and is equal to B∗ ◦ A∗.

It is obvious that conjugates exist for linear mappings between (alge-
braically) free idempotent semimodules [14], moreover, for such mappings
conjugation reduces to taking transpose of the respective finite or infinite
matrices.

In this paper we consider conjugates to Scott continuous linear map-
ping between the previously introduced topologically free L-idempotent
semimodules over continuous semilattices with bottom elements.

Proposition 2.3. Let D1, D2 be continuous semilattices with bottom ele-
ments. For each Scott continuous linear mapping Φ : M[L]D1 → M[L]D2,
there is a Scott continuous conjugate Φ′ : M[L′]D

∧
2 → M[L′]D

∧
1 .

Proof. By Proposition 1.3 the mapping Φ and the required conjugate Φ′

must be unique Scott continuous linear extensions of mappings ϕ : D1 →
M[L]D2, which is the restriction of Φ to D1, and ϕ′ : D∧

2 → M[L′]D
∧
1 , which

we can calculate.
The following must hold for all d1 ∈ D1, d′2 ∈ D∧

2 :

Φ(η[L]D1(d1)) · η[L′]D
∧
2 (d

′
2) = η[L]D1(d1) · Φ′(η[L′]D

∧
2 (d

′
2)), (∗)

i.e.
sup{ϕ(d1)(d2) | d2 ∈ d′2} = sup{ϕ′(d′2)(d

′
1) | d′1 3 d1}. (∗∗)
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The Scott continuity of the function ϕ′(d′2) : D∧
1 → Lop implies that,

for any d′1 ∈ D∧
1 :

ϕ′(d′2)(d
′
1) = inf

{
sup{ϕ′(d′2)(d

′′
1) | d′′1 ∈ D∧

1 , d
′′
1 3 d1}

∣∣ d1 ∈ d′1
}
=

= inf
{
sup{ϕ(d1)(d2) | d2 ∈ d′2}

∣∣ d1 ∈ d′1
}
,

which we take as a definition of ϕ′(d2). For each function θ : D1 → L,
the correspondence d′1 7→ inf{θ(d1) | d1 ∈ d′1} is a normalized monotonic
predicate D∧

1 → L, hence ϕ′(d2) ∈ M[L′]D
∧
1 .

On the other hand, for all d′′1 � d′1 in D∧
1 there is d1 ∈ d′1 such that

d′′1 ⊂ {d1}↑, hence

sup{ϕ′(d′′2)(d
′′
1) | d′′2 � d′2} > sup

{
sup{ϕ(d1)(d2) | d2 ∈ d′′2}

∣∣ d′′2 � d′2
}
=

= sup{ϕ(d1)(d2) | d2 ∈ d′2} > inf
{
sup{ϕ(d1)(d2) | d2 ∈ d′2}

∣∣ d1 ∈ d′1
}
=

= ϕ′(d′2)(d
′
1).

Therefore for the function m′ = sup{ϕ′(d′′2) | d′′2 � d′2} in M[L′]D
∧
1 we

have m′(d′′1) > ϕ′(d′2)(d
′
1) for all d′′1 � d′1. This implies m1 > ϕ′(d′2), thus

sup{ϕ′(d′′2) | d′′2 � d′2} = ϕ′(d′2),

i.e. ϕ′ is Scott continuous. Now it is routine but straightforward to show
that the Scott continuity of ϕ implies that ϕ′ satisfies (**), therefore (*).
Since · is uniform and infinitely distributive in the both variables, and
each element of M[L]D1 and M[L′]D

∧
2 is a (probably infinite) supremum of

elements of the form α ~̄ η[L]D1(d1) and β ~̄ η[L′]D
∧
2 (d

′
2), respectively, this

implies that the unique Scott continuous linear extensions Φ and Φ′ of ϕ
and ϕ′ are mutually conjugate.

Remark. It is easy to observe that the constructed mapping ϕ′ : D2 →
M[L′]D

∧
1 is Scott continuous for all isotone ϕ : D1 → M[L]D2, but without

the Scott continuity of ϕ the equality (*) can fail.

3 Discussion of results and open problems

The introduced notion have (obviously non-unique) interpretation in terms
of denotational semantics and fuzzy logic. Semimodules of monotonic pred-
icates provide a geometric description of fuzzy knowledge about state of
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system. This allows to transfer to this field methods of linear algebra and
functional analysis, in the spirit of idempotent mathematics [16].

The “kernel” P : D × D′ → L is related to a case when D and D′

consist of descriptions of states of the same system from two “points of
view”. Then P (d, d′) is a measure of incompatibility of the information
portions d and d′. If P attains only values 0 and 1, then P (d, d′) = 0

means simply that d and d′ are compatible, and P (d, d′) = 1 corresponds
to incompatible d, d′. The introduced product (m,m′)∗P then shows how
incompatible are L-fuzzy predicates m : D → L and m′ : D′ → L. It is
also clear how to interpret separation of points.

Similarly linear operators between predicate semimodules are predicate
transformers [7], and conjugate operators describe the process of “inverse
information discovery”. More on applied aspects will be said in our subse-
quent publication.

There are, hovewer, open questions:

Problem 1. Describe continuous (L,⊕, ∗)-semimodules that can be in-
cluded in a dual pair.

Problem 2. Describe Scott continuous linear operators between continuous
(L,⊕, ∗)-semimodules that have conjugate operators.
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[10] Hájek P. Fuzzy logics with noncommutative conjuctions // J. Logic
Computation. — 2003. — 13, №4. — P. 469–479.

[11] Bergmann M. Introduction to Many-Valued and Fuzzy Logic: Se-
mantics, Algebras, and Derivation Systems. — New York: Cambridge
Univ. Press, 2008. — 329 p.

[12] Akian M. Densities of invariant measures and large deviations //
Trans. Amer. Math. Soc. — 1999. — 351, №11. — P. 4515–4543.

[13] Mac Lane S. Categories for the Working Mathematician. 2nd ed. —
New York: Springer, 1998. — 314 p.

[14] Cohen G., Gaubert S., Quadrat J.-P. Duality and separation the-
orems in idempotent semimodules // arXiv: math/0212294v2
[math.FA]. — 29 Sep 2003.

[15] Nykyforchyn O., Mykytsey O. Conjugate measures on semilattices //
Visnyk LNU, ser. mech.-mat. — 2010. — 72. — P. 88–99.



314 O. Nykyforchyn, O. Mykytsey

[16] Kolokoltsov V.N., Maslov V.P. Idempotent Analysis and Its Applica-
tions. — Dordrecht: Kluwer Academic Publ., 1998. — 305 p.

L-IДЕМПОТЕНТНI ЛIНIЙНI ОПЕРАТОРИ МIЖ

НАПIВМОДУЛЯМИ ПРЕДИКАТIВ, ДУАЛЬНI ПАРИ I

СПРЯЖЕНI ОПЕРАТОРИ

Олег НИКИФОРЧИН, Оксана МИКИЦЕЙ

Прикарпатський нацiональний унiверситет iм. Василя Стефаника,
вул. Шевченка 57, Iвано-Франкiвськ 76018

e-mail: oleh.nyk@gmail.com, oksana39@if.ua

Показано, що множини монотонних предикатiв на областях (domai-
ns) зi значеннями у цiлком дистрибутивних кванталях є вiльними цiл-
ком дистрибутивними iдемпотентними напiвмодулями над цими обла-
стями. Також побудовано iдемпотентнi дуальнi пари i спряженi опе-
ратори.




