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We establish a relationship of the evolution equations for observables of

a hard sphere system and the kinetic equations. In case of initial states

specified by a one-particle distribution function we prove that the approach

to the description of the evolution of states in terms of the Enskog-type

kinetic equation is the dual approach with respect to the approach on the

basis of the dual BBGKY hierarchy for marginal observables.

1 Introduction

The considerable advance in the rigorous derivation of the Boltzmann ki-
netic equation in the Boltzmann-Grad scaling limit is well known [1]-[4].
The lack of similar progress for the Enskog kinetic equation [5],[6] sug-
gested by D. Enskog [7] as a generalization of the Boltzmann equation for
dense gases, is stipulated by a priori stated collision integral of this kinetic
equation for hard spheres. In this paper we develop a rigorous formalism
for the description of the kinetic evolution of infinitely many hard spheres
within the framework of the evolution equations for observables.
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As is generally known the many-particle systems are described in terms
of two sets of objects: observables and states. The functional of mean val-
ues of observables defines a duality between observables and states, and as
a consequence there exist two approaches to the description of the evolu-
tion. In the book [1] the evolution of hard spheres was described within the
framework of the evolution of states by the BBGKY hierarchy for marginal
distribution functions. An equivalent approach to the description of the
evolution of many-particle systems is given in terms of marginal observ-
ables governed by the dual BBGKY hierarchy [8],[9]. In the paper [10] the
evolution of states of hard spheres was described in terms of a one-particle
marginal distribution function governed by the generalized Enskog kinetic
equation. The purpose of this paper is to establish the relationship of the
evolution of observables of a hard sphere system and the kinetic evolution
of hard spheres described in terms of a one-particle marginal distribution
function.

We prove that, if initial data is completely specified by a one-particle
distribution function, then at arbitrary moment of time the evolution of
states described by the generalized Enskog kinetic equation is the dual
approach of the description of the evolution of hard spheres with respect
to the approach on the basis of the dual BBGKY hierarchy for marginal
observables.

2 The evolution of hard sphere observables

We consider a system of identical particles of a unit mass interacting as
hard spheres with a diameter σ > 0. Every particle is characterized by its
phase coordinates (qi, pi) ≡ xi ∈ R3×R3, i ≥ 1. For configurations of such
a system the following inequalities are satisfied: |qi − qj| ≥ σ, i 6= j ≥ 1,
i.e. the set Wn ≡

{
(q1, . . . , qn) ∈ R3n

∣∣|qi − qj| < σ for at least one pair
(i, j) : i 6= j ∈ (1, . . . , n)

}
, n > 1, is the set of forbidden configurations.

To describe dynamics of finitely many hard spheres we introduce the
group of evolution operators Sn(t) for n hard spheres on the space Cn ≡
C(R3n × (R3n \ Wn)) of bounded continuous functions on R3n × (R3n \
Wn) that are symmetric with respect to permutations of the arguments
x1, . . . , xn, equal to zero on the set of forbidden configurations Wn and
equipped with the norm: ‖bn‖ = supx1,...,xn

|bn(x1, . . . , xn)|. It is deter-
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mined by means of the phase trajectories of a hard sphere system almost
everywhere on the phase space R3n × (R3n \ Wn), namely, beyond of the
set M0

n of the zero Lebesgue measure, as follows

(Sn(t)bn)(x1, . . . , xn) ≡ Sn(t, 1, . . . , n)bn(x1, . . . , xn)
.
= (1)

.
=


bn(X1(t, x1, . . . , xn), . . . , Xn(t, x1, . . . , xn)),

if (x1, . . . , xn) ∈ (R3n × (R3n \Wn)),

0, if (q1, . . . , qn) ∈ Wn,

where Xi(t) is a phase trajectory of ith particle constructed in [1], and
the set M0

n consists of the phase space points with initial data such that
during the evolution multiple collisions, i.e. collisions of more than two
particles, or more than one two-particle collision at the same instant, or
infinite number of collisions within a finite time interval occur.

On the space Cn one-parameter mapping (1) is an isometric ∗-weak
continuous group of operators, i.e. it is a C∗

0 -group [11].
We define the nth-order cumulant of groups of operators (1) as follows

An(t,X)
.
=

∑
P:X=

⋃
iXi

(−1)|P|−1(|P| − 1)!
∏
Xi⊂P

S|Xi|(t,Xi), (2)

where
∑

P is the sum over all possible partitions P of the set X ≡ (1, . . . , n)

into |P| nonempty mutually disjoint subsets Xi ⊂ X.
Let us indicate some properties of cumulants (2). If n = 1, on the

domain of the definition b1 ∈ D ⊂ C1 in the sense of the ∗-weak convergence
of the space C1 a generator of the first-order cumulant is given by the
operator [11]

w∗− lim
t→0

1

t
(A1(t, 1)− I)b1(x1) = L(1)b1(x1)

.
= (3)

.
= 〈p1,

∂

∂q1
〉b1(x1),

where the symbol 〈·, ·〉 means a scalar product.
In case n = 2, if t > 0, then for b2 ∈ D ⊂ C2 the following equality

holds [4] in the sense of a ∗-weak convergence of the space C2

w∗− lim
t→0

1

t
A2(t, 1, 2)b2(x1, x2) = Lint(1, 2)b2(x1, x2)

.
= (4)

.
= σ2

∫
S2+

dη〈η, (p1 − p2)〉
(
b2(q1, p

∗
1, q2, p

∗
2)− b2(x1, x2)

)
δ(q1 − q2 + ση),
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where S2
+

.
= {η ∈ R3

∣∣ |η| = 1〈η, (p1− p2)〉 > 0} and the momenta p∗1, p
∗
2 are

defined by the equalities

p∗i
.
= pi − η 〈η, (pi − pj)〉 , (5)

p∗j
.
= pj + η 〈η, (pi − pj)〉 .

If t < 0, the operator Lint(1, 2) is defined by the corresponding expression
[1].

In case n > 2 ,as a consequence of the fact that for a hard sphere system
group (1) is defined almost everywhere on the phase space R3n×(R3n\Wn),
i.e. there are no collisions of more than two particles at every instant, it
holds that

w∗− lim
t→0

1

t
An(t, 1, . . . , n)bn(x1, . . . , xn) = 0.

If t ≥ 0, the evolution of marginal observables of hard spheres is de-
scribed by the initial-value problem of the dual BBGKY hierarchy

∂

∂t
Bs(t, x1, . . . , xs) =

( s∑
j=1

L(j) +
s∑

j1<j2=1

Lint(j1, j2)
)
Bs(t, x1, . . . , xs) +(6)

+
s∑

j1 6=j2=1

Lint(j1, j2)Bs−1(t, x1, . . . , xj1−1, xj1+1, . . . , xs),

Bs(t, x1, . . . , xs) |t=0= B0
s (x1, . . . , xs), s ≥ 1, (7)

where on D ⊂ Cs the operators L(j) and Lint(j1, j2) are defined by formulas
(3) and (4), respectively. We refer to recurrence evolution equations (6) as
the dual BBGKY hierarchy for hard spheres. If t ≤ 0, a generator of the
dual BBGKY hierarchy is determined by the corresponding expression [1].

On the space Cγ of sequences b = (b0, b1, . . . , bn, . . .) of functions bn ∈ Cn
equipped with the norm: ‖bn‖Cγ = max

n≥0

γn

n!
‖bn‖, for abstract initial-value

problem (6)-(7) the following statement is true.

Theorem 1. A solution B(t) = (B0, B1(t, x1), . . . , Bs(t, x1, . . . , xs), . . .) of
initial-value problem (6)–(7) is determined by the expansions

Bs(t, x1, . . . , xs) =
s∑

n=0

1

n!

s∑
j1 6=... 6=jn=1

A1+n

(
t, {Y \ Z}, Z

)
B0

s−n(x1, (8)

. . . , xj1−1, xj1+1, . . . , xjn−1, xjn+1, . . . , xs),
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where (1 + n)th-order cumulant (2) is given by the formula

A1+n(t, {Y \ Z}, Z) .
= (9)

.
=

∑
P: ({Y \Z},Z)=

⋃
iXi

(−1)|P|−1(|P| − 1)!
∏
Xi⊂P

S|Xi|(t,Xi),

and Y ≡ (1, . . . , s), Z ≡ (j1, . . . , jn) ⊂ Y , {Y \ Z} is the set consisting of
one element Y \Z = (1, . . . , j1−1, j1+1, . . . , jn−1, jn+1, . . . , s), i.e. this
set is a connected subset of the partition P such that |P| = 1.

For B(0) = (B0, B
0
1 , . . . , B

0
s , . . .) ∈ C0

γ ⊂ Cγ being finite sequences of
infinitely differentiable functions with compact supports there is a classical
solution, and for arbitrary initial data B(0) ∈ Cγ there is a generalized
solution.

We note that under the condition that γ < e−1, the estimate holds∥∥B(t)
∥∥
Cγ

≤ e2(1− γe)−1
∥∥B(0)

∥∥
Cγ
. (10)

The simplest examples of marginal observables (8) are given by the
following expressions

B1(t, x1) = A1(t, 1)B
0
1(x1),

B2(t, x1, x2) = A1(t, {1, 2})B0
2(x1, x2) + A2(t, 1, 2)(B

0
1(x1) +B0

1(x2)).

We remark that expansion (8) can be also represented in the form of
the perturbation (iteration) series [8], [9] as a result of applying of analogs
of the Duhamel equation to cumulants (9) of groups of operators (1).

Let L1
n ≡ L1(R3n×(R3n\Wn)) be the space of integrable functions that

are symmetric with respect to permutations of the arguments x1, . . . , xn,
equal to zero on the set of forbidden configurations Wn and equipped
with the norm: ‖fn‖L1(R3n×R3n) =

∫
dx1 . . . dxn|fn(x1, . . . , xn)|. We denote

by L1
n,0 ⊂ L1

n the subspace of continuously differentiable functions with
compact supports.

The mean value of the marginal observable B(t) ∈ Cγ at t ∈ R in
the initial marginal state F (0) = (1, F 0

1 , . . . , F
0
n , . . .) ∈ L1 =

⊕∞
n=0 L

1
n is

defined by the functional

〈
B(t)

∣∣F (0)
〉
=

∞∑
s=0

1

s!

∫
(R3×R3)s
dx1 . . . dxs Bs(t, x1, . . . , xs)F

0
s (x1, . . . , xs). (11)
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Owing to estimate (10), functional (11) exists under the condition that:
γ < e−1.

We remark that one component sequences of marginal observables cor-
respond to observables of certain structure, namely the marginal observable
B(1) = (0, b1(x1), 0, . . .) corresponds to the additive-type observable, and
the marginal observable B(k) = (0, . . . , 0, bk(x1, . . . , xk), 0, . . .) corresponds
to the k-ary-type observable [9]. If in capacity of initial data (7) we con-
sider the additive-type marginal observable, then the structure of solution
expansion (8) is simplified and attains the form

B(1)
s (t, x1, . . . , xs) = As(t, 1, . . . , s)

s∑
j=1

b1(xj), s ≥ 1. (12)

Now we consider relationships of the evolution equations for observables
of hard spheres and the evolution equations for states described in terms
of a one-particle marginal distribution function.

3 The main result: the generalized Enskog equation

We consider initial states specified by a one-particle marginal distribution
function

F (c)
s (x1, . . . , xs) =

s∏
i=1

F 0
1 (xi)XR3s\Ws

, s ≥ 1, (13)

where XR3s\Ws
≡ Xs(q1, . . . , qs) is a characteristic function of allowed con-

figurations R3s \Ws of s hard spheres and F 0
1 ∈ L1(R3 ×R3). Initial data

(13) is intrinsic for the kinetic description of many-particle systems because
in this case all possible states are characterized by means of a one-particle
marginal distribution function. Then the dual picture of the evolution de-
scribed in terms of the dual BBGKY hierarchy (6) is the evolution of states
described within the framework of the generalized Enskog kinetic equation
and a sequence of explicitly defined functionals of a solution of this kinetic
equation.

In fact, the following statement is true.

Proposition 1. For functional (11) the equality holds〈
B(t)

∣∣F c
〉
=

〈
B(0)

∣∣F (t | F1(t))
〉
, (14)
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where F c is a sequence of initial marginal distribution functions defined
by (13), and F (t | F1(t)) =

(
F1(t), F2(t | F1(t)), . . . , Fs(t | F1(t))

)
is a

sequence of marginal functionals of the state.

The marginal functionals of the state Fs(t, x1, . . . , xs | F1(t)) are repre-
sented by the expansions over products of the first element of the sequence
F (t | F1(t)), i.e. they are functionals with respect to the one-particle
distribution function F1(t),

Fs(t, x1, . . . , xs | F1(t))
.
= (15)

.
=

∞∑
n=0

1

n!

∫
(R3×R3)n

dxs+1 . . . dxs+nV1+n(t, {Y }, X \ Y )
s+n∏
i=1

F1(t, xi),

s ≥ 2,

where the following notations are used: Y ≡ (1, . . . , s), X ≡ (1, . . . , s+n),
and the (n + 1)th-order evolution operator V1+n(t), n ≥ 0, is defined as
follows

V1+n(t, {Y }, X \ Y )
.
= (16)

.
=

n∑
k=0

(−1)k
n∑

m1=1

. . .

n−m1−...−mk−1∑
mk=1

n!

(n−m1 − . . .−mk)!
×

×Â1+n−m1−...−mk
(t, {Y }, s+ 1, . . . , s+ n−m1 − . . .−mk)

k∏
j=1

mj∑
kj2=0

. . .

kjn−m1−...−mj+s−1∑
kjn−m1−...−mj+s=0

s+n−m1−...−mj∏
ij=1

1

(kj
n−m1−...−mj+s+1−ij

− kj
n−m1−...−mj+s+2−ij

)!
×

×Â1+kjn−m1−...−mj+s+1−ij
−kjn−m1−...−mj+s+2−ij

(t, ij, s+ n−m1 − . . .−mj + 1 +

+kj
s+n−m1−...−mj+2−ij

, . . . , s+ n−m1 − . . .−mj + kj
s+n−m1−...−mj+1−ij

).

In expression (16) we mean kj
1 ≡ mj, k

j
n−m1−...−mj+s+1 ≡ 0, and by the

operator Â1+n(t) we denote the (1 + n)th-order scattering cumulant

Â1+n(t, {Y }, X \ Y )
.
= A1+n(−t, {Y }, X \ Y )Is+n(X)

s+n∏
i=1

A1(t, i), (17)
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where the operator A1+n(−t) is (1+n)th-order cumulant (9) of groups (1)
and the operator Is+n is defined by the formula

Is+n(X)fs+n
.
= XR3(s+n)\Ws+n

fs+n. (18)

If ‖F1(t)‖L1(R3×R3) < e−(3s+2), series (15) converges in the norm of the space
L1
s for arbitrary t ∈ R. We give a few examples of expressions (16):

V1(t, {Y }) = Â1(t, {Y }) .
= Ss(−t, 1, . . . , s)Is(Y )

s∏
i=1

S1(t, i),

V2(t, {Y }, s+ 1) = Â2(t, {Y }, s+ 1)− Â1(t, {Y })
s∑

i1=1

Â2(t, i1, s+ 1).

The first element of the sequence F (t | F1(t)), i.e. the one-particle
marginal distribution function F1(t), is determined by the series

F1(t, x1) = (19)

=
∞∑
n=0

1

n!

∫
(R3×R3)n

dx2 . . . dxn+1 A1+n(−t, 1, . . . , n+ 1)I1+n

n+1∏
i=1

F 0
1 (xi),

where the operator A1+n(−t) is the (1+n)th-order cumulant (9) of groups
(1) and the operator I1+n is defined by formula (18).

If t ≥ 0, then the one-particle distribution function (19) is a solution
of the following initial-value problem of the generalized Enskog kinetic
equation [10]

∂

∂t
F1(t, x1) = −〈p1,

∂

∂q1
〉F1(t, x1) + (20)

+σ2

∞∑
n=0

1

n!

∫
R3×S2+

dp2dη

∫
(R3×R3)n

dx3 . . . dxn+2〈η, (p1 − p2)〉 ×

×
(
V1+n(t, {1∗, 2∗−}, 3, . . . , n+ 2)F1(t, q1, p

∗
1)F1(t, q1 − ση, p∗2)

n+2∏
i=3

F1(t, xi)−

−V1+n(t, {1, 2+}, 3, . . . , n+ 2)F1(t, x1)F1(t, q1 + ση, p2)
n+2∏
i=3

F1(t, xi)
)
,

F1(t, x1)|t=0 = F 0
1 (x1), (21)
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where we use notations from definition (1) adopted to the conventional
notation of the Enskog collision integral: indices (1], 2]±) denote that the
evolution operator V1+n(t) acts on the corresponding phase points (q1, p]1)
and (q1±ση, p]2), and the (n+1)th-order evolution operator V1+n(t), n ≥ 0,
is determined by expansion (16) in case of |Y | = 2. The series on the right-
hand side of this equation converges under the condition: ‖F1(t)‖L1(R×R) <

e−8 .
We remark that in the paper [10] for initial-value problem (20)–(21) the

existence theorem was proved on the space of integrable functions and the
links of the generalized Enskog equation (20) with the Markovian Enskog-
type kinetic equations [5], [12], [13] (see also reviews [14], [15]) were also
established.

In the next section we prove the validity of the stated Proposition.

4 A mean value functional within the framework of
the kinetic evolution

In particular case of initial data (7) specified by the s-ary marginal ob-
servable s ≥ 2, i.e. B(s)(0) = (0, . . . , 0, bs, 0, . . .), equality (14) has the
form

〈
B(s)(t)

∣∣F (0)
〉
= (22)

=
1

s!

∫
(R3×R3)s

dx1 . . . dxs bs(x1, . . . , xs)Fs(t, x1, . . . , xs | F1(t)),

where the marginal functionals of the state Fs(t, x1, . . . , xs | F1(t)) are
determined by series (15).

To verify equality (22) we use the following property of groups (1)

∞∑
n=0

1

n!

∫
(R3×R3)n

dx1 . . . dxn(Sn(t)bn)(x1, . . . , xn)fn(x1, . . . , xn) =

=
∞∑
n=0

1

n!

∫
(R3×R3)n

dx1 . . . dxnbn(x1, . . . , xn)(Sn(−t)fn)(x1, . . . , xn),
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and transform the functional
〈
B(s)(t)

∣∣F (0)
〉

to the form

〈
B(s)(t)

∣∣F (0)
〉
=

∞∑
n=0

1

n!

∫
(R3×R3)n

dx1 . . . dxn
1

(n− s)!
× (23)

×
n∑

j1 6=...6=jn−s=1

A1+n−s

(
t, {1, . . . , j1 − 1, j1 + 1, . . . , jn−s − 1,

jn−s + 1, . . . , s}, j1, . . . , jn−s

)
bs(x1, . . . , xs)

n∏
i=1

F 0
1 (i)XR3n\Wn

=

=
1

s!

∫
(R3×R3)s

dx1 . . . dxs bs(x1, . . . , xs)
∞∑
n=0

1

n!

∫
(R3×R3)n

dxs+1 . . .

. . . dxs+nA1+n(−t, {Y }, X \ Y )
s+n∏
i=1

F 0
1 (i)XR3(s+n)\Ws+n

,

where the (1+n)th-order cumulant A1+n(−t, {Y }, X \Y ) is defined by (9).
For F 0

1 ∈ L1(R×R) and bs ∈ Cs obtained functional (23) exists under the
condition that: ‖F 0

1 ‖L1(R×R) < e−1.
Then we expand the cumulants A1+n(−t) of groups of operators (1) in

functional (23) over the new evolution operators V1+n(t), n ≥ 0, into the
kinetic cluster expansion [10] (n ≥ 0)

A1+n(−t, {Y }, s+ 1, . . . , s+ n)Is+n(1, . . . , s+ n) = (24)

=
n∑

k1=0

n!

(n− k1)!k1!
V1+n−k1(t, {Y }, s+ 1, . . . , s+ n− k1)×

×
k1∑

k2=0

k1!

k2!(k1 − k2)!
. . .

kn−k1+s−1∑
kn−k1+s=0

kn−k1+s−1!

kn−k1+s!(kn−k1+s−1 − kn−k1+s)!
×

×
s+n−k1∏

i=1

A1+kn−k1+s+1−i−kn−k1+s+2−i
(−t, i, s+ n− k1 + 1 + ks+n−k1+2−i,

. . . , s+ n− k1 + ks+n−k1+1−i)I1+kn−k1+s+1−i−kn−k1+s+2−i
(i,

s+ n− k1 + 1 + ks+n−k1+2−i, . . . , s+ n− k1 + ks+n−k1+1−i),

where the operator Is+n is defined by formula (18) and the following
convention is assumed: ks+1 ≡ 0. We give a few examples of recurrence
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relations (24) in terms of scattering cumulants (17). Acting on both sides
of equality (24) by the evolution operators

∏s+n
i=1 A1(t, i), we obtain

Â1(t, {Y }) = V1(t, {Y }),

Â2(t, {Y }, s+ 1) = V2(t, {Y }, s+ 1) +V1(t, {Y })
s∑

i1=1

Â2(t, i1, s+ 1),

where Â1+n(t) is the (1 + n)th-order (n = 0, 1) scattering cumulant (17).

We note that solutions of recurrence relations (24) are given by expres-
sions (16).

As a result of the application of cluster expansions (24) the following
equality holds

∞∑
n=0

1

n!

∫
(R3×R3)n

dxs+1 . . . dxs+nA1+n(−t, {Y }, X \ Y )Is+n

s+n∏
i=1

F 0
1 (xi) =

=
∞∑
n=0

1

n!

∫
(R3×R3)n

dxs+1 . . . dxs+nV1+n(t, {Y }, X \ Y )
s+n∏
i=1

F1(t, xi),

where the (n + 1)th-order generating evolution operator V1+n(t) is de-
termined by formula (16) and the function F1(t) is represented by series
(19).

Indeed, representing series over the summation index n and the sum
over the summation index n1 in functional (23) as a two-fold series, we
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derive
∞∑
n=0

1

n!

∫
(R3×R3)n

dxs+1 . . . dxs+nA1+n(−t, {Y }, X \ Y )Is+n

s+n∏
i=1

F 0
1 (xi) =

=
∞∑
n=0

1

n!

∫
(R3×R3)n

dxs+1 . . . dxs+nV1+n(t, {Y }, X \ Y )
∞∑

k1=0

k1∑
k2=0

. . .

. . .

kn+s−1∑
kn+s=0

1

kn+s!(kn+s−1 − kn+s)! . . . (k1 − k2)!

∫
(R3×R3)k1

dxn+s+1 . . .

. . . dxn+s+k1

n+s∏
i=1

A1+kn+s+1−i−kn+s+2−i
(−t, i, n+ s+ 1 + kn+s+2−i, . . .

. . . n+ s+ kn+s+1−i)

n+s+k1∏
j=1

F 0
1 (xj)X1+kn+s+1−i−kn+s+2−i

(qi,

qn+s+1+kn+s+2−i
, . . . , qn+s+kn+s+1−i

),

where we use the accepted above notation. According to the validity of
the product formula

n+s∏
i=1

F1(t, xi) =
∞∑

k1=0

k1∑
k2=0

. . .

kn+s−1∑
kn+s=0

1

kn+s!(kn+s−1 − kn+s)! . . . (k1 − k2)!
×

×
∫
(R3×R3)k1

dxn+s+1 . . . dxn+s+k1

n+s∏
i=1

A1+kn+s+1−i−kn+s+2−i
(−t, i, n+ 3 +

+kn+4−i, . . . , n+ 2 + kn+3−i)X1+kn+s+1−i−kn+s+2−i
(qi, qn+s+1+kn+4−i

, . . . ,

qn+s+kn+3−i
)

n+s+k1∏
j=1

F 0
1 (xj),

in obtained expansion the series over the index k1 can be expressed in
terms of one-particle marginal distribution function (19). Thus, equality
(22) is true.

We remark that in case of initial states (13) that involve correlations
cluster expansions (24) permits to take into consideration the initial cor-
relations in kinetic equations.

In case of initial data (7) specified by additive-type marginal observ-
ables, i.e. B(1)(0) = (0, b1, 0, . . .), according to solution expansion (12),
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equality (14) takes the form

〈
B(1)(t)

∣∣F (0)
〉
=

∫
R3×R3

dx1 b1(x1)F1(t, x1), (25)

where the one-particle marginal distribution function F1(t) is determined
by series (19). This equality is proved similar to equality (23).

In the paper [10] it was established that the function F1(t, x1) given
by series (19) is governed by the generalized Enskog kinetic equation (20).
Hence for additive-type marginal observables the generalized Enskog ki-
netic equation (20) is dual to the dual BBGKY hierarchy for hard spheres
(6) with respect to bilinear form (11).

The validity of equality (14) in case of the general type of marginal
observables is proved in much the same way as the validity of equalities
(22) and (25).

Thus, if initial states are completely determined by a one-particle dis-
tribution function on allowed configurations (13), then the evolution of
hard spheres governed by the dual BBGKY hierarchy (6) for marginal ob-
servables can be completely described by the generalized Enskog kinetic
equation (20) and by the sequence of marginal functionals of the state (15).

In case of quantum many-particle systems the relationship of the evolu-
tion of marginal observables and quantum kinetic equations was considered
in the paper [16].

5 Conclusion and outlook

Within the framework of the nonequilibrium grand canonical ensemble the
origin of the microscopic description of the evolution of observables of a
hard sphere system was considered. In case of initial data (13) solution
(8) of the Cauchy problem of the dual BBGKY hierarchy for hard spheres
(6)–(7) and a solution of the Cauchy problem of the generalized Enskog
equation (20)–(21) together with marginal functionals of the state (15)
give two equivalent approaches to the description of the evolution of a
hard sphere system (equality (14)). In fact, the rigorous justification of
the Enskog kinetic equation is a consequence of the validity of equality
(14).
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It should be emphasized that the kinetic evolution is an inherent prop-
erty of infinite-particle systems. In spite of the fact that in terms of a
one-particle marginal distribution function from the space of integrable
functions only a hard sphere system with the finite average number of
particles can be described, the Enskog kinetic equation has been derived
on the basis of the formalism of nonequilibrium grand canonical ensem-
ble since its framework is adopted to the description of infinite-particle
systems in suitable functional spaces [1] as well.

We note that the structure of the collision integral expansion of the
generalized Enskog equation (20) is such that the first term of this expan-
sion is the Boltzman-Enskog collision integral and the next terms describe
all possible correlations which are created by hard sphere dynamics and
by the propagation of initial correlations connected with the forbidden
configurations.

On the kinetic (macroscopic) scale the typical length for the kinetic
phenomena is the mean free pass. Then, observing that in the kinetic
scale of the variation of variables [2] the groups of operators (1) of finitely
many hard spheres depend on microscopic time variable ε−1t, where ε ≥ 0

is a scale parameter, the dimensionless marginal functionals of the state are
represented in the form: Fs

(
ε−1t, x1, . . . , xs | F1(t)

)
, s ≥ 2. In the formal

limit (the Markovian limit) ε → 0, the limit marginal functional of the
state Fs(x1, . . . , xs | F1(t)) is represented by expansion (15) with the limit
generating evolution operators limε→0V1+n(ε

−1t), n ≥ 0, for example,

lim
ε→0

V1(ε
−1t, {Y }) = lim

ε→0
Â1(ε

−1t, {Y }).

We note that the limit of the first two terms of dimensionless marginal
functional expansions (15) coincide with corresponding terms of the Marko-
vian functionals constructed by the perturbation method with the use of
the weakening of correlation condition by N.N. Bogolyubov [1], [12], [17].

Finally we remark also that the developed approach is also related to
the problem of a rigorous derivation of the non-Markovian kinetic-type
equations from underlaying many-particle dynamics which make possible
to describe the memory effects of particle and energy transport, for exam-
ple, the anomalous transport in turbulent plasma, the Brownian motion of
macroparticles in complex fluids.
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