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The notion of generalized constant of Eiler are considered and investigated for general terms
of series which are determined by concrete function. Conditions of existing this constant. Two
criterions of existing of Eiler constant are founded. Method of using constant of Eiler for calculating
numerical value of partial series. It was proved existing of this constant for divergent series with
bounded increasing of general term of series.

O. YUsapranpkuit. Inmezpysanms HeAIHITHUT Pi6HAHD MEOPIT COMMONIE MEMOJOM NPOEKMYBAHHA
ma nepemeopenmsmu muny ap6y // Mar. sicuuk HTIII. — 2013. — T.10. — C. 193-202.

[IpoBeneno nopiBHsiHHS MeTOAY iHTErpyBaHHs HeJiHIHHUX piBHsAHD, 3anpononoBanoro B.O. Map-
YEHKOM, Ta, I IXO/Y, 10 TPYHTYETHCS HA BUKOPUCTAHHI mepeTrBopeHs tuty Jlapby. OTpumaro B siBHii
dopwmi marpuyane nepersopents Jlapoy-Kpama-MarseeBa apyroro tuiry 3a JOMOMOTOI0 METOLY MPO-
ekryBanus B.O. Mapuenka.

1. Introduction

In the modern theory of nonlinear integrable systems algebraic methods play an impor-
tant role. Among them there are the Zakharov-Shabat dressing method [1, 2|, Marchenko’s
method [3] and an approach based on the Darboux-Crum-Matveev transformations [4, 5|.
Algebraic methods allow us to omit analytical difficulties that arise in the investigation
of corresponding direct and inverse scattering problems for nonlinear equations. In paper
[6] a connection between V.O. Marchenko’s projection method and an approach based on
Darboux-Crum-Matveev transformations were investigated. In particular, the general matrix
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Darboux-Crum-Matveev transformation of the first type was obtained via V.O. Marchenko’s
ideas. The aim of this paper is to investigate the connections between the projection method
and the differential Darboux-Crum-Matveev transformations of the second type.

This work is organized as follows. In Section 2 we present a short description of the pro-
jection method and its applications to the integration of nonlinear integrable systems. As an
example we consider the Heisenberg equation. In Section 3 we introduce the Darboux-Crum
transformation of the second type and demonstrate its application to the nonlinear equa-
tions of mathematical physics. In this section (Subsection 3.1) we also construct the matrix
Darboux-Crum-Matveev transformation of the second type via V.0O. Marchenko’s ideas. It
is the main result of this paper which is presented by Theorem 7. This theorem provides
us with a possibility to construct solutions of nonlinear equations (including Heisenberg and
Ishimori equations) via invariant transformations of the linear differential operators that are
involved in Lax pairs. In the final section, we discuss the obtained results and mention
problems for further investigations.

2. A projection method and exact solutions of the Heisenberg
system

Consider the linear system of the following form:

Pty + Bpgy = 0, (1)
BS% - QOA7

where ¢ is a (2N x 2N )-dimensional matrix of functions, ap € RUIR; A, B are (2N x 2N)-
constant matrices, B2 = Iy (Ioy denotes (2N x 2N)-identity matrix). The following propo-
sition is proven in [3]:

Proposition 1. (2N x 2N)-dimensional matrix of functions
S =o' Bo, 2)
where ® = ¢, and ¢ is a solution of system (1), satisfies the matrix equation:
—4e Sy, =[S, Szzl- (3)

In case N =1, S = S* = S~ ! equation (3) becomes the Heisenberg equation.
Now we shall consider the structure and properties of the matrix-valued function ® that
arises in formula (2):

@ =p,p7, (4)

where ¢ is the (Nk x Nk)-dimensional Wronski matrix of the following form:

g01 QON

¢ = : : ; : (5)
N—-1 N—-1
R, W)

where ¢, = () = ((pij’l)szl, [ =1,N are (k x k)-dimensional matrices of functions. Let

us recall a proposition from paper [6]:



INTEGRATION OF NONLINEAR EQUATIONS OF THE SOLITON THEORY 195

Proposition 2. Matrix-valued function ® = ¢, p~!, where ¢ is a Wronski matrix (5), has
the following form:

0 I, ... 0

o—| P F ] :
0 0 ... I ©)
D Py ... Dy

where [, is an identity matrix of dimension (k x k); ®;, j = 1, N are (k x k)-dimensional
matrix-valued functions. The inverse matrix ® ! has the form:

—o M0, 0Py ... —B'Dy P!
Iy, 0 0 0

L 0 I, 0 0 . (7)
0 0 Iy, 0

In order to find the exact solutions of the Heisenberg equation we will need a Wronski
matrix that satisfies system (1) with some matrices A, B and as = —i. For this purpose we
will consider the (2 x 2)-dimensional matrix-valued solutions ¢;, [ = 1, N of the systems:

11, — 03P1ze = 0, Y1z = 030104, (8)
where o3 = diag(1, —1), a; € Mataxo(C). Let us put
B = diag(ag, 03,... ,0'3) - Mathsz((C), A= diag(al, ... ,(IN> - MCLtQNXQN(C>. (9)

Then the Wronski matrix ¢ satisfies system (1) with matrices B and A, defined by formula
(9) and ap = —i:
{ i1, — Bpgw =0,
B@af - ¢A7
Using Proposition 1 (formula (2)) and exact form of functions ® (6), @' (7) and matrix
B (9), we obtain that (2N x 2N)-dimensional function S has form:

(1)1_10'3<D1 (131_1[0'3,(1)2] c. (131_1[0'3,(1)]\[]
0 g3 e 0
S=¢1BP = 0 0 0 (10)
O O e 03
and satisfies equation (3) with ay = —i. By substituting the exact form of matrix-valued

function S (10) into equation (3), we notice that its (2 x 2)-dimensional block
Sl = @;10'3(1)1 (11)
satisfies the Heisenberg equation:

4iSy ., = [S1, 51 al- (12)
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Let us put a; = diag()\;, — ;) in system (8). Tt is shown in [3] that the matrix-valued function
S1 is Hermitian and regular in case of the following choice of the solution of (8):

1, P24 —
o = ( PR TN (13)
Y211 P22,
— o NT—iAPt+0 = NT—i\?t+6 _ = _ =
where (1, = eNFTINITOU S pyg ) = e MTTINITO2 o) | = — D9y, P01 = P11, O, 09 € C.

From the exact form of the matrix S; (formula (11)) it follows that S is unitary: I =
P103®; P03 Pt = 515, = 9157, where I, is (2 x 2)-dimensional identity matrix. If we put
N =1 in formula (13), then we obtain the following solution of Heisenberg equation (12):

511 S12
Sl - _ ’
S12 —S11

cos? v,
s=1- cosh?(2Re(6,))’ (14)
oy — 2 cos 7y, sinh(2Re(6;) + i6;) exp(—2:Im(6;))
cosh?(2Re(6,)) 7

0, = \ix + iA%tQ + aq, )\1,0&1 S C, T € R.

In the following section we will consider solution generating technique for the Heisenberg
equation via differential Darboux-Crum-Matveev transformations of the second type that
were investigated in [7].

3. Darboux-Crum-Matveev transformations of
the second type

Consider the following pair of operators:
1
Li=8D, M;y=id, —SD*— 3% D, (15)

with (2 x 2)-dimensional matrix-valued function S, which is unitary and Hermitian: S = S*,
S~1 = 8*. Consider linear problems with operators L; and M, (15):

Li{f} = FA. My{f} =0, (16)

where f is a (2 X 2)-dimensional matrix-valued function and A is a constant matrix with
dimension (2 x 2). The compatibility condition for the system (16) f,;, = fi,» results in the
Heisenberg equation for S:
4iSy, =[S, Szz). (17)
Let (2 x 2)-dimensional matrix function ¢ satisfies linear problems with operators L,
M2 (15)

Li{pr} = 1A, Maf{pr} = 0. (18)
Counsider the following transformation [7]:
Wi =07 o1 Dt = @7 Wiy = 7D — I, I, = diag(1,1), @1 = p1.0; " (19)

The operator Wiy in formula (19) is the Darboux-Crum-Matveev transformation of the first
type. The following proposition holds:
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Proposition 3. 1. Operators L;[2] and M[2] defined by Lax pair Ly, My (15) and op-
erator W (19) via equalities L1[2]V~V11 = WHLl, M2[2]W11 = WHMQ have the form:

L1[2] = S[2]D, M,[2] =id;, — S[2]D* — %S[%ED, S[2] = ®,159;. (20)

2. (2 x 2)-dimensional matrix-valued function F = Wy {f}, where f is an arbitrary
solution of linear problem (16), satisfies the system:

L2I{F} = FA, My2){F} =0 (21)
Proof. Let L1[2] = V1D + V; and consider the equalities:

Ly[2]Wyy — Wi Ly = (ViD + Vo) (®7'D — 1) — (&7'D — 1,)SD =
=-V®,'®,,o;'D+V1®,'D* — VD + V@, 'D -V, — &;'SD* — ®,'S,D + SD.

By setting coefficients near D?, D and D° equal to zero we obtain the following equations:
VidTh — @718 =0, -V, 07 — Vi + Vb —@7'S, + 5 =0, V;=0. (22)

From (22) we get V; = ®;'S®;, V; =0 and —®; 'SP, &' —&;'SD;—P;'S,+S = 0. The
last equation can be rewritten as (S®1), = [Py, S]P;. Now we have to verify that the
function ®; = ¢; ] * satisfies it. For this purpose we will rewrite equation (18) for function
¢1 in the exact form: Sip;, = ¢ A. By multiplying this equation by ¢;* and differentiating
it with respect to x we obtain: (S®;), = (p1Ap; ") = CraAp]" — Gr1Ap o1t Tt
remains to notice that o1, A" = @107 w1 Ap;t = @,.5®; and v Ap; 107t = SP2.
In a similar way the exact form of M;[2] can be found. Finally we notice that Li[2]{F} =
Wi L {f} = Wi {f}A = FA and M,[2){F} = Wy, My{f} = W1, {0} = 0. O

We shall notice that under the choice S = o3 systems (18) and (8) coincide. In particular,
by putting A = diag(\;, —\;) and choosing a solution of system (18) according to (13) with
S = 03, we obtain that the (2 x 2)-dimensional matrix-valued function S[2] = ®;'S®, =
®'o3®, coincides with the function S; (14) and satisfies Heisenberg equation.

3.1. Construction of general matrix Darboux-Crum-Matveev
transformation of the second type via the projection method

In this section our aim is to obtain the differential Darboux-Crum-Matveev transformation
of the second type via Darboux-Matveev transformation of higher matrix dimension and the
projection method. For further purposes we will need the following proposition:

Proposition 4 ([5]). Let ¢ be a fixed (K x K)-dimensional matrix solution of equation
L{p} = (a0 = Y- UD'){i} = pAu, (23)
=0

where U; are (K x K)-dimensional matrix-valued functions; Ay is a (K x K)-dimensional
constant matrix; f is an arbitrary (K x M )-dimensional solution of the equation: L{f} = fA,
where A is a (M x M)-constant matrix. Then the function

F=W{f}=oD{o ' f} = fo — oo 'f (24)
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satisfies matrix equation:
LI2{F} = (a@t - [2]17) (F} = FA, (25)
i=0

with U,[2] = Uy, Un—1(2] = U1 + [A, e~ t]. The rest of coefficients U;[2], 0 < j <n — 2,
can be expressed via matrix-valued functions U;, 0 < ¢ < n, and the solution ¢ of (23).

Consider the evolution operator of the following form:
= al; — Z U D', acC, (26)
i=1

where U; are (K x K)-dimensional matrix-valued functions. It should be noticed that the
special cases of the operator (26) are operators from Lax pair for Heisenberg equation (15).

Proposition 5. Let ¢ be a fixed (K x K )-dimensional matrix-valued solution of the following
equation:

Lip} = Ay, (27)
where A; is a (K x K)-dimensional constant matrix; f is an arbitrary (K x M)-dimensional
solution of equation L{f} = fA, where A is (M x M )-constant matrix. Then the function

Fi=W{f}=0""W{f} = (oo ") "'W{f} = 0o, oD{o" f} (28)

satisfies matrix equation:
LI2{F} = (a@t - [z]Di) (F} = FA, (20)
=1

where U, [2] = ®7'U,®, U,,_1[2] = ®7'U,,,® + n® U, 0, + U, P|® + &~ 'U, P, and
the rest of coefficients U;[2] can be expressed via ¢ and matrix coefficients U;, 1 <i < n.

Proof. Let us define the operator L[2] from equality: L[Q]W — WL = 0, where the trans-
formation W is defined by formula (28). By setting coefficients near D, 1 < ¢ < n, equal
to zero we find the exact form of U;[2], 1 < ¢ < n. In order to show that the coeffi-
cient near D" is equal to zero in operator L[2], it is sufficient to check thatL[2]{I;} = 0
where I, is (k x k)-dimensional identity matrix. It is evident that W{I,} = I,. Thus,
0 = LRIW{L} — WL{I,} = L[2]{I;}. Moreover, the equality L[2]W — WL = 0 implies
LRIW{f} = L[2]F = WL{f} = FA. O

It is evident that the Darboux-Crum-Matveev operator of the second type W defined by
(28) provides us with an invariant transformation of operator L (26) into operator L[2] (29).

We will use the last proposition in order to construct Darboux-Crum-Matveev transfor-
mation of the second type. Namely, let ¢;, 1 <1 < N, be (k x k)-dimensional matrix-valued
functions that are fixed solutions of the system:

Lig) = (a@t . ZuiD’){@l} — oA, 1€{1,... N}, (30)
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where coefficients u; are (kxk)-dimensional matrix-valued functions; A; are (kxk)-dimensional
constant matrices; f is an arbitrary (k x m)-dimensional matrix solution of the equation:

L(f} = (a0 - z WD ){f} = A, (31)

with (m x m)-dimensional constant matrix A. Let us differentiate each equation of system
(30) N —1 times. As a result we obtain N —1 additional equations. Thus, we obtain (N x N)
equations:

o) — ZZC’gqu)gol(Hs*j) = <pl(s)Al, le{l,...,N}, s€{0,...,N—1}. (32)

i=1 j=0

Equations (32) can be rewritten in the following form:
L{p} = (a0 = Y UD') {2} = oA, (33)
i=1

where ¢ and U; are matrix (Nk x Nk)-dimensional functions defined by formulae:

U; 0 0 ... 0
o1 .. ON u) u; 0 ... 0
b= : : : LU = “ 2u} u; 0 (34)
(N-1) (N-1) : :
! SR (N-1) 1 (N-2) 2 (N=3)
u, Cn_qu, Cx_qu, Uy

In analogous form we can rewrite equation (31) and its N — 1 differential consequences:

Ly = (00— 3 UD) (= 2, )

f
. 1
where [ := i . By applying Proposition 5 we obtain that the function
fN=D
F=W{f} =07¢D{g" f} =07 f. (36)
satisfies the equation:
L{F} = aF, - Y U2JF¥ = FA. (37)
i=1

By using the exact form (7) of matrix-valued function ®~! = @@ (formula (36)) we
obtain that

—P'®, 0Py ... —® Dy D!
I, 0 0 0
@@;1: 0 I 0 0 , (38)

0 0 Iy, 0
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where [, is an identity matrix with dimension (k x k); ®; are (k x k)-dimensional matrix-
valued functions. A (Nk x m)-dimensional matrix-valued function F' has the form:

F
0 N-1 ~
F=| o | Fi==f =2 0 fO 4 @ ™ = Wi {f}. (39)
. s=1
0

By using the form of function F' (39) we obtain that equation (37) reduces to the equation
for (k x m)-dimensional matrix block F} of function F:

a(F)e =Y (U2)uFY = FiA,
=1
where (U;[2])11 are (k x k)-dimensional blocks of matrices U;[2] that are situated in the left
upper corner.

Remark 6. The operator Wy that is defined by formula (39) has functions ¢;, 1 < j < N,
in its kernel (it follows directly from formulae (36) and (38)). Thus Wy is a Darboux-Crum-
Matveev transformation of the second type:

N-1 N
Wi} =—f =D 07" ey fO + &7 N = —f + 3 "ain f©. (40)

s=1 s=1

The previous remark shows that we obtained the exact form of all the coefficients of
Darboux-Crum-Matveev transformation operator of the second type in terms of functions
®;1, 0 < j < N, that belong to Hopf-Cole transformation (5), via Darboux-Matveev
transformation (differential operator of the first order) of the second type with a higher
matrix dimension.

As a result of previous considerations in this section, we obtained the following general-
ization of Proposition 5 using V.O. Marchenko’s projection method:

Theorem 7. Let function f be an arbitrary (k x m)-dimensional matrix solution of the
equation (31):

L{fy = (a0 =Y wD) {7} =JA,  acC (41)

with (k x k)-dimensional matrix-valued functions u; = u;(x,t) and (m X m)-constant matrix
A. Let functions ¢, be fixed (k x k)-dimensional matrix-valued solutions of equations

L{gi} = ok (42)
with (k x k)-constant matrices A;. Assume that the operator Wy is defined by formulae
(38)-(39), where ¢ is a Wronski matrix constructed by functions ¢, | € {1,..., N}. Then,
the function Fy := Wx{f} satisfies the equation a(Fy); — 31, u; 2]F" = R A, with (k x k)-
dimensional matrix-valued functions u;[2] that can be expressed in the exact form via matrix-
valued functions u;, j € {1,...,n}, and ¢, l € {1,...,N}.

In case N = 1 the operator Wy = W, (which is constructed by one solution ¢; of
equation (42)) becomes the differential operator of the first order and Theorem 7 coincides
with Proposition 5.
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4. Conclusions

In this paper we compared two methods of integration of nonlinear systems that were
proposed in |3, 4, 5, 7|. In particular, we investigated a connection between the Darboux-
Matveev transformation of the second type that was introduced in [7], and V.O. Marchenko
projection method [3]. By combining Darboux-Matveev transformation and the projection
method we obtained dressing method for the linear differential operator (41) via Darboux-
Crum-Matveev transformations (see Theorem 7). To the special cases of differential operator
(41) belong the operators involved in Lax pair for Heisenberg (see formulae (15) and (17)) and
Ishimori equations. Thus, Theorem 7 provides us with a solution generating method for the
above mentioned nonlinear equations and their “higher” analogues. It should be noticed that
the projection method can also be used for integration of the noncommutative generalizations
of the famous nonlinear equations of the soliton theory that were considered recently in [8, 9.
In particular, in [8] the noncommutative generalization of the Davey-Stewartson equation was
investigated via differential Darboux transformations. The exact form of obtained solution of
the latter system can be expressed via quasideterminants that were investigated in [10, 11].
The connection between the theory of quasideterminants and V.O. Marchenko’s method
was also used for investigation of some noncommutative integrable systems in [12]. The
problem of generalization of the Marchenko method to the case of integro-differential Lax
pairs remains for further investigations. In particular, such operators arise as a result of the
symmetry reductions in the KP hierarchy [13, 14] and their (2-+1)-dimensional extensions
[15, 16, 17, 18]. We shall also point out that the dressing methods for integro-differential
operators from those hierarchies via Darboux transformations were considered in |16, 19, 20].

The results of this paper were approved at conferences dedicated to the 120th anniversary
of Stefan Banach [21]
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