RELATIVE SIZE OF SUBSETS OF A SEMIGROUP

Igor Protasov ${ }^{1}$ and Serhil Slobodianiuk ${ }^{2}$
Dedicated to the 60th birthday of Igor Guran
${ }^{1}$ Department of Cybernetics, Kyiv University, Volodymyrska 64, 01033, Kyiv, Ukraine
${ }^{2}$ Department of Mechanics and Mathematics, Kyiv University, Volodymyrska 64, 01033, Kyiv, Ukraine

I. Protasov, S. Slobodianiuk, Relative size of subsets of a semigroup, Math. Bull. Shevchenko Sci. Soc. 12 (2015), 7-15.

Given a semigroup S, we introduce relative (with respect to a filter τ on S) versions of large, thick and prethick subsets of S, give the ultrafilter characterizations of these subsets and explain how large could be some cell in a finite partition of a subset $A \in \tau$.
I. Протасов, С. Слободянюк. Відносні розміри підмножин напівгруп // Мат. вісн. Наук. тов. ім. Шевченка. — 2015. - Т.12. - С. 7-15.

Для напівгрупи S ми означуемо відносні (стосовно фільтра τ на S) версії великих, товстих та передтовстих підмножин S, даемо ультрафільтрові характеризації цих множин та визначаємо наскільки великими можуть бути клітки скінченних розбить підмножини $A \in \tau$.

1. Introduction

For a semigroup $S, a \in S, A \subseteq S$ and $B \subseteq S$, we use the standard notations

$$
a^{-1} B=\{x \in S: a x \in B\}, \quad A^{-1} B=\bigcup_{a \in A} a^{-1} B
$$

By $[A]^{<\omega}$ we denote the family of finite subsets of a set A.

Key words and phrases: large, thick and prethick subsets of a semigroup; ultrafilters; the Stone-Čech compactification of a discrete semigroups; minimal left ideal.

E-mail: i.v.protasov@gmail.com, slobodianiuk @ yandex.ru

A subset A of S is called

- large if there exists $F \in[S]^{<\omega}$ such that $S=F^{-1} A$;
- thick if, for every $F \in[S]^{<\omega}$, there exists $x \in S$ such that $F x \subseteq A$;
- prethick if $F^{-1} A$ is thick for some $F \in[S]^{<\omega}$;
- small if $L \backslash A$ is large for any large subset L.

In the dynamical terminology [8, p.101], large and prethick subsets are known as syndetic and piecewise syndetic sets. These and several other combinatorially rich subsets of a semigroup are intensively studied in connection with Ramsey Theory (see [8, Part III]). In [6], large, thick and prethick subsets are called right syndetic, right thick and right piecewise syndetic sets.

The names large and small subsets of a group appeared in [4], [5] with additional adverb "left". Implicitly, thick subsets were used in [11] to partition an infinite totally bounded topological group G into $|G|$ dense subsets. For more delicate classification of subsets of a group by their sizes, we refer the reader to [3], [9], [10], [14], [17], [18]. In the framework of General Asymptology [20, Ch.9], large and thick subsets of a group could be considered as counterparts of dense and open subsets of a topological space.

Our initial motivation to this note was a desire to refine and generalize to semigroups the following statement [13, Corollary 3.4]: if a neighborhood U of the identity e of a topological group G is finitely partitioned, then there exists a cell A of the partition and a finite subset $F \subset U$ such that $F A A^{-1}$ is a neighborhood of e. On this way, we run to some relative (with respect to a filter) versions of above definitions.

Let S be a semigroup and τ be a filter on S. We say that a subset A of S is

- τ-large if, for every $U \in \tau$, there exists $F \subseteq[U]^{<\omega}$ such that $F^{-1} A \in \tau$;
- τ-thick if there exists $U \in \tau$ such that, for any $F \in[U]^{<\omega}$ and $V \in \tau$, one can find $x \in V$ such that $F x \subseteq A$;
- τ-prethick if, for every $U \in \tau$, there exists $F \in[U]^{<\omega}$ such that $F^{-1} A$ is τ-thick;
- τ-small if $L \backslash A$ is τ-large for every τ-large subset L.

In the case $\tau=\{S\}$, we omit τ and get the initial classification of subsets of S by their sizes.

To conclude the introduction, we need some algebra in the Stone-Čech compactifications from [8].

For a discrete semigroup S we consider the Stone-Čech compactification βS of S as the set of all ultrafilters on S, identifying S with the set of all principal ultrafilters,
and denote $S^{*}=\beta S \backslash S$. For a subset A of S and a filter τ on S, we set

$$
\bar{A}=\{p \in \beta S: A \in p\}, \quad \bar{\tau}=\bigcap\{\bar{A}: A \in \tau\}=\{p \in \beta S: \tau \subseteq p\}
$$

and note that the family $\{\bar{A}: A \subseteq S\}$ forms a base for the open sets on βS, and each non-empty closed subset in βS is of the form $\bar{\tau}$ for an appropriate filter τ on S.

The universal property of the Stone-Čech compactifications of discrete spaces allows to extend multiplication from S to βS in such way that for any $p \in \beta S$ and $g \in S$ the shifts $x \mapsto x p$ and $x \mapsto g x, x \in \beta S$ are continuous.

For any $A \subseteq S$ and $q \in \beta S$, we denote

$$
A_{q}=\left\{x \in S: x^{-1} A \in q\right\} .
$$

Then formally the product $p q$ of ultrafilters p and q can be defined [8, p.89] by the rule:

$$
A \in p q \leftrightarrow A_{q} \in p .
$$

In this note, we give the ultrafilter characterizations of τ-large and τ-thick subsets (section 2) and τ-prethick subsets (section 3) in spirit of [6], [8], [18]. If τ is a subsemigroup of βS, we describe the minimal left ideal of $\bar{\tau}$ to understand how big could be the cells in a finite partition of a subset $A \in \tau$.

2. Relatively large and thick subsets

Let τ be a filter on a semigroup S.
Theorem 2.1. A subset L of S is τ-large if and only if, for every $p \in \bar{\tau}$ and $U \in \tau$, we have $L_{p} \cap U \neq \varnothing$.

Proof. We suppose that L is τ-large and take arbitrary $p \in \bar{\tau}$ and $U \in \tau$. We choose $F \in[U]^{<\omega}$ such that $F^{-1} L \in \tau$. Since $F^{-1} L=\bigcup_{g \in F} g^{-1} L$, there exists $g \in F$ such that $g^{-1} L \in p$ so $g \in L_{p}$ and $L_{p} \cap U \neq \varnothing$.

To prove the converse statement, we assume that L is not τ-large and choose $U \in \tau$ such that $F^{-1} L \notin \tau$ for every $F \in[U]^{<\omega}$. Then we take an ultrafilter $p \in \bar{\tau}$ such that $S \backslash F^{-1} L \in p$ for each $F \in[U]^{<\omega}$. Clearly, $g^{-1} L \notin p$ for every $g \in U$ so $U \cap L_{p}=\varnothing$.

Theorem 2.2. A subset T of S is τ-thick if and only if there exists $p \in \bar{\tau}$ such that $T_{p} \in \tau$.

Proof. We suppose that T is τ-thick and pick corresponding $U \in \tau$. The set $[U]^{<\omega} \times \tau$ is directed \leq by the rule:

$$
(F, V) \leq\left(F^{\prime}, V^{\prime}\right) \Leftrightarrow F \subseteq F^{\prime}, V^{\prime} \subseteq V .
$$

For each pair (F, V), we choose $g(F, V) \in V$ such that $F g(F, V) \subseteq T$. The family of subsets of the form

$$
P_{F, V}=\left\{g\left(F^{\prime}, V^{\prime}\right):(F, V) \leq\left(F^{\prime}, V^{\prime}\right)\right\}, \quad(F, V) \in[U]^{<\omega} \times \tau,
$$

is contained in some ultrafilter $p \in \bar{\tau}$. By the construction, $U \subseteq T_{p}$ so $T_{p} \in \tau$.
To prove the converse statement, we choose $p \in \bar{\tau}$ such that $T_{p} \in \tau$. Given any $F \in\left[T_{p}\right]^{<\omega}$ and $V \in \tau$, we take $P \in p$ such that $P \subseteq V$ and $g P \subseteq T$ for each $g \in F$. Then we choose an arbitrary $x \in P$ and get $F x \subseteq T$, so T is τ-thick.

We say that a subset T of S is τ-extrathick if $T_{p} \in \tau$ for each $p \in \bar{\tau}$.
By [6, Theorem 2.4], a subset T is thick if and only if T intersects each large subset non-trivially. In the case $\tau=\{G\}$, this is a partial case of the following theorem.

Theorem 2.3. If each subset $U \in \tau$ is τ-extrathick, then a subset T of S is τ-thick if and only if $T \cap L \cap U \neq \varnothing$ for any τ-large subset L and $U \in \tau$.

Proof. We assume that T is τ-thick and use Theorem 2.2 to find $p \in \bar{\tau}$ such that $T_{p} \in \tau$. We take an arbitrary τ-large subset L and $U \in \tau$. Since U is τ-extrathick, we have $U_{p} \in \tau$. By Theorem 2.1, $L_{p} \cap\left(T_{p} \cap U_{p}\right) \neq \varnothing$. If $g \in L_{p} \cap T_{p} \cap U_{p}$, then $L \in g p, T \in g p, U \in g p$. Hence, $T \cap L \cap U \neq \varnothing$.

We suppose that $T \cap L \cap U=\varnothing$ for some τ-large subset L and $U \in \tau$ but T is τ-thick. We take $p \in \bar{\tau}$ such that $T_{p} \in \tau$. Since U is τ-extrathick, we have $U_{p} \in \tau$. By Theorem 2.1, $L_{p} \cap\left(T_{p} \cap U_{p}\right) \neq \varnothing$. If $g \in L_{p} \cap T_{p} \cap U_{p}$ then $L \in g p, T \in g p$, $U \in g p$. Hence, $T \cap L \cap U \neq \varnothing$ and we get a contradiction.

Theorem 2.4. Let $g \in S$ and let τ be a filter on S such that $g^{-1} U \in \tau$ for each $U \in \tau$. If a subset L of S is τ-large and a subset T of S is τ-thick, then $g L$ and $g^{-1} T$ are τ-large and τ-thick, respectively.

Proof. To prove that $g L$ is τ-large, we take an arbitrary $U \in \tau$ and choose $V \in \tau$ such that $g V \subseteq U$ (using $g^{-1} U \in \tau$). Since L is τ-large, there is $F \in[V]^{<\omega}$ such that $F^{-1} L \in \tau$. We note that $F^{-1} L=(g F)^{-1} g L$. Since $g F \in[U]^{<\omega}$, we conclude that $g F$ is τ-large.

To see that $g^{-1} T$ is τ-thick, we pick $U \in \tau$ such that, for every $F \in[U]^{<\omega}$ and $W \in \tau$, there is $x \in W$ such that $F x \subseteq T$. We choose $V \in \tau$ such that $g V \subseteq U$.

Then we take an arbitrary $H \in[V]^{<\omega}$ and $W \in \tau$. Since $g H \in[U]^{<\omega}$, there exists $y \in W$ such that $g H y \subseteq T$ so $H y \subseteq g^{-1} T$ and $g^{-1} T$ is τ-thick.

We say that a family \mathcal{F} of subsets of S is left (left inverse) invariant if, for any $A \in \mathcal{F}$ and $g \in S$, we have $g A \in \mathcal{F}\left(g^{-1} A \in \mathcal{F}\right)$.

Corollary 2.5. If τ is inverse invariant, then the family of all τ-large (τ-thick) subsets is left (left inverse) invariant.

Theorem 2.6. Let τ be a filter on S such that, for every $U \in \tau$, we have $\{g \in S$: $\left.g^{-1} U \in \tau\right\} \in \tau$. If T is τ-thick, then there exists $V \in \tau$ such that $g^{-1} T$ is τ-thick for every $g \in V$.

Proof. We take $U \in \tau$ such that for any $K \in[U]^{<\omega}$ and $W \in \tau$ we have $K x \subseteq T$ for some $x \in W$. Then we choose $V \in \tau$ such that for every $g \in V$ there exists $V_{g} \in \tau$ with $g V_{g} \subseteq U$. Given any $F \in\left[V_{g}\right]^{<\omega}$ and $W \in \tau$, we pick $x \in W$ such that $g F x \subset T$, so $F x \subseteq g^{-1} T$ and $g^{-1} T$ is τ-thick.

A topology \mathcal{T} on a semigroup S is called left invariant if each left shift $x \mapsto g x$, $g \in G$ is continuous (equivalently, the family \mathcal{T} is left inverse invariant).

We assume that S has identity e and say that a filter τ on S is left topological if τ is the filter of neighborhoods of e for some (unique in the case if S is a group) left invariant topology \mathcal{T} on S.

Let τ be a left topological filter on S. Then each subset $U \in \tau$ is τ-extrathick and τ satisfies Theorem 2.6. Hence, Theorems 2.3 and 2.6 hold for τ.

We show that Theorem 2.6 needs not to be true with τ-large subsets in place of τ thick subsets even if τ is a filter on neighborhoods of the identity for some topological group.

We endow \mathbb{R} with the natural topology, denote $\mathbb{R}^{+}=\{r \in \mathbb{R}: r>0\}$ and take the filter τ of neighborhoods of 0 . The set \mathbb{R}^{+}is τ-large because $\mathbb{R}^{+}-x \in \tau$ for each $x \in \mathbb{R}^{+}$. On the other hand, $\mathbb{R}^{+}+x$ is not τ-large for each $x \in \mathbb{R}^{+}$.

3. Relatively prethick subsets

We say that a filter τ on S is a semigroup filter if $\bar{\tau}$ is a subsemigroup of the semigroup βS and note that, if either τ is inverse left invariant or S has the identity and τ is left topological, then τ is a semigroup filter.

In the case $\tau=\{S\}$, the following statement is Theorem 4.39 from [8].
Theorem 3.1. Let τ be a semigroup filter on S. An ultrafilter $p \in \bar{\tau}$ belongs to some minimal left ideal L of $\bar{\tau}$ if and only if for each $A \in p$ the set A_{p} is τ-large.

Proof. Let L be a minimal left ideal of $\bar{\tau}, p \in L, A \in p$ and $U \in \tau$. Clearly, $L=\bar{\tau} p$. We take an arbitrary $r \in \tau$. By the minimality of $L, \bar{\tau} r p=\bar{\tau} p$, so there exists $q_{r} \in \tau$ such that $q_{r} r p=p$. Since $A \in q_{r} r p$ and $U \in q_{r}$, by the definition of the multiplication in βS, there exists $B_{r} \in r$ such that $\bar{B}_{r} p \subseteq \overline{x_{r}^{-1} A}$. We consider the open cover $\left\{\bar{B}_{r}: r \in \bar{\tau}\right\}$ of the compact space $\bar{\tau}$ and choose its finite subcover $\left\{\bar{B}_{r}: r \in K\right\}$. We put $B=\bigcup_{r \in K} B_{r}, F=\left\{x_{r}: r \in K\right\}$. Then $B \in \tau$ and $B \subseteq\left(F^{-1} A\right)_{p}$. By the choice, $F \subseteq U$. Since p is an ultrafilter, we have $\left(F^{-1} A\right)_{p}=F^{-1} A_{p}$. Hence, A_{p} is τ-large.

To prove the converse statement, suppose that $\bar{\tau} p$ is not minimal and choose $r \in \bar{\tau}$ such that $p \notin \bar{\tau} r p$. Since the subset $\tau r p$ is closed in $\bar{\tau}$, there exists $A \in p$ with $\bar{A} \cap \bar{\tau} r p=\varnothing$. It follows that $A \notin q r p$ for every $q \in \bar{\tau}$. Hence, $S \backslash A \in q r p$ for every $q \in \bar{\tau}$. It follows that there exists $U \in \tau$ such that $x^{-1}(G \backslash A) \in r p$ for each $x \in U$. By the assumption, there exists $F \in[U]^{<\omega}$ such that $F^{-1} A \in q p$ for every $q \in \bar{\tau}$. In particular, $x^{-1} A \in r p$ for some $x \in F$ and we get a contradiction.

Corollary 3.2. Let τ be a semigroup filter on S and let $p \in \bar{\tau}$ belongs to some minimal left ideal of $\bar{\tau}$. Then every subset $A \in p$ is τ-prethick.

Proof. Given an arbitrary $U \in \tau$, we use Theorem 3.1 to find $F \in[V]^{<\omega}$ such that $\left(F^{-1} A\right)_{p} \in \tau$. By Theorem 2.2, $F^{-1} A$ is τ-thick. Hence, A is τ-prethick.

Corollary 3.3. Let τ be a semigroup filter on a group G and let $U \in \tau$. Then, for every finite partition \mathcal{P} of U and every $V \in \tau$, there exists $A \in \mathcal{P}$ and $F \in[V]^{<\omega}$ such that $F^{-1} A A^{-1} \in \tau$.

Proof. We take p from some minimal left ideal of $\bar{\tau}$. Then we choose $A \in \mathcal{P}$ such that $A \in p$. Applying Theorem 3.1, we find $F \in[V]^{<\omega}$ such that $\left(F^{-1} A\right)_{p} \in \tau$. If $x \in\left(F^{-1} A\right)_{p}$ then $F^{-1} A \in x p$ and $x \in F^{-1} A A^{-1}$. Hence, $F^{-1} A A^{-1} \in \tau$.

In connection with Corollary 3.3, we would like to mention one of the most intriguing open problem in the subset combinatorics of groups posed by the first author in [12, Problem 13.44]: given any group $G, n \in \mathbb{N}$ and partition \mathcal{P} on G into n cells, do there exit $A \in \mathcal{P}$ and $F \subseteq G$ such that $G=F A A^{-1}$ and $|F| \leq n$? For recent state of this problem see the survey [2].

On the other hand [1], if an infinite group G is either amenable or countable, then for every $n \in \mathbb{N}$, there exists a partition $G=A \cup B$ such that $F A$ and $F B$ are not thick for each F with $|F| \leq n$. We do not know whether such a 2-partition exists for any uncountable group G and $n \in \mathbb{N}$.

Theorem 3.4. Let G be a group, τ be a filter of neighborhoods of the identity for some group topology on G and $U \in \tau$. Then, for any partition \mathcal{P} of $U,|\mathcal{P}|=n$ and $V \in \tau$, there exist $A \in \mathcal{P}$ and $K \subseteq V$ such that $K A A^{-1} \in \tau$ and $K \leq 2^{2^{n-1}-1}$.

Proof. We consider only the case $n=2$. For $n>2$, the reader can adopt the inductive arguments from [16, pp.120-121], where this fact was proved for $\tau=\{G\}$. So let $U=A \cup B$ and $e \in B$. We choose $W \in \tau$ such that $W W \subseteq U$ and denote $C=A \cap W$. If there exists $H \in \tau$ such that $x C \cap C \neq \varnothing$ for each $x \in H$ then $C C^{-1} \in \tau$ and we put $F=\{e\}$, so $F^{-1} A A^{-1} \in \tau$. Otherwise, we take $g \in V \cap W$ such that $g C \cap C=\varnothing$. Then $g C \subseteq W W \subseteq U$, so $g C \subseteq B$ and $B \cup g^{-1} B \in \tau$. We put $F=\{e, g\}$. Since $e \in B$, we have $F^{-1} B B^{-1} \in \tau$.

Recall that a family \mathcal{F} of subsets of a set X is partition regular if, for every $A \in \mathcal{F}$ and any finite partition of A, at least one cell of the partition is a member of \mathcal{F}.

For a subsemigroup filter $\bar{\tau}$ on S, we denote by $M(\bar{\tau})$ the union of all minimal left ideals of $\bar{\tau}$. In the case $\tau=\{G\}$, the following statement is Theorem 4.40 from [8].

Theorem 3.5. Let τ be left inverse invariant filter on a semigroup S. Then the following statements hold
(i) a subset A of S is τ-prethick if and only if $\bar{A} \cap M(\bar{\tau}) \neq \varnothing$;
(ii) $P \in \overline{M(\bar{\tau})}$ if and only if each $A \in p$ is τ-prethick;
(iii) the family of all τ-prethick subsets of S is partition regular.

Proof. (i) If $\bar{A} \cap M(\bar{\tau}) \neq \varnothing$ then A is τ-prethick by Corollary 3.2.
Assume that A is τ-prethick and pick a finite subset F such that $F^{-1} A$ is τ-thick. We use Theorem 2.2 to find $p \in \bar{\tau}$ such that $\left(F^{-1} A\right)_{p} \in \tau$. Then $F^{-1} A \in q p$ for every $q \in \bar{\tau}$. The set $\bar{\tau} p$ contains some minimal left ideal L of $\bar{\tau}$. We take any $r \in L$ so $F^{-1} A \in r$ and $A \in \operatorname{tr}$ for some $t \in F$. Since τ is inverse left invariant $t r \in \bar{\tau}$. Hence, $\operatorname{tr} \in M(\bar{\tau}) \cap \bar{A}$.

The statements (ii) and (iii) follow directly from (i).
Theorem 3.6. Let τ be a left invariant filter on a group G. A subset A of G is τ-prethick if and only if A is not τ-small.

Proof. By the definition and Theorem 2.4, the family of all τ-small subsets of G is left invariant and invariant under finite unions. We suppose that A is τ-small and τ-prethick and take $K \in[G]^{<\omega}$ such that $K A$ is τ-thick. We note that G is τ-large and $K A$ is τ-small so $G \backslash K A$ is τ-large. But $(G \backslash K A) \cap K A=\varnothing$ and we get a contradiction with Theorem 2.3.

We do not know whether Theorems 3.5 and 3.6 hold for any left topological filter τ (even for filters of neighborhoods of identity of topological groups).

For a subset A of an infinite group G, we denote

$$
\Delta(A)=\{x \in G: x A \cap A \text { is infinite }\} .
$$

Answering a question from [15], Erde proved [7] that if A is prethick then $\Delta(A)$ is large. We conclude the paper with some relative version of this statement.

For a filter τ on a semigroup S and $A \subseteq S$, we denote

$$
\Delta_{\tau}(A)=\left\{x \in S:\left(x^{-1} A \cap A\right) \cap U \neq \varnothing \text { for any } U \in \tau\right\}
$$

In the case of a group $G, \Delta(A)=(\Delta(A))^{-1}$ so we have $\Delta(A)=\Delta_{\tau}(A)$ for the filter τ of all cofinite subsets of G.

Theorem 3.7. Let τ be a left inverse invariant filter on a semigroup S. If a subset A of S is τ-prethick then $\Delta_{\tau}(A)$ is τ-large.

Proof. We observe that $\Delta_{\tau}(A)=\bigcup\left\{A_{p}: p \in \bar{\tau}, A \in p\right\}$. Now let A be τ-prethick. We use Theorem 3.5(i) to find $p \in \bar{A} \cap M(\bar{\tau})$. By Theorem 3.1, for every $U \in \tau$, there exists a finite subset $K \subseteq U$ such that $K^{-1} A_{p} \in \tau$. Since $A_{p} \subseteq \Delta_{\tau}(A)$, we have $K^{-1} \Delta_{\tau}(A) \in \tau$, so $\Delta_{\tau}(A)$ is τ-large.

Let τ be a left invariant filter on a group G and let $X \subseteq G$. Then $\Delta_{\tau}(X)=$ $\{g \in G:(g X \cap X) \cap U \neq \varnothing$ for each $U \in \tau\}$ and $\Delta_{\tau}(X \backslash U)=\Delta_{\tau}(X)$ for each $U \in \tau$. Now let τ be left invariant and $G \backslash K \in \tau$ for each $K \in[G]^{<\omega}$. By [2, Proposition 2.7], for every n-partition \mathcal{P} of G, there exists $A \in \mathcal{P}$ and $F \in[G]^{<\omega}$ such that $|F| \leq n!$ and $F \cdot \Delta_{\tau}(A) \in \tau$. This statement and above observations imply that, for any $U \in \tau$ and n-partition \mathcal{P} of U, there exist $F \in[G]^{<\omega}$ and $A \in \mathcal{P}$ such that $|F| \leq n$! and $F \Delta_{\tau}(A) \in \tau$. Moreover, for any pregiven $V \in \tau, F$ can be chosen from V^{-1}. Indeed, we take $x \in \bigcap_{g \in F} g V$ so $F^{-1} x \subseteq V$ and $x^{-1} F \Delta_{\tau}(A) \in \tau$.

Question 3.1. Let τ be a filter of neighborhoods of the identity for some group topology on a group G and let $U \in \tau$. Given any n-partition \mathcal{P} of U and $V \in \tau$, do there exist $A \in \mathcal{P}$ and $F \subseteq V$ such that $|F| \leq n!$ and $F A A^{-1} \in \tau$?
By Theorem 3.4, the answer to Question 3.1 is positive with $2^{2^{n}}$ in place of $n!$.
Question 3.2. Does there exist a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for any group G, a filter τ of a group topology on $G, U \in \tau$ and an n-partition \mathcal{P} of U, there are $A \in \mathcal{P}$ and $K \in[G]^{<\omega}$ such that $K \Delta_{\tau}(A) \in \tau$ and $|K| \leq f(n)$? If yes, then can K be chosen from pregiven $V \in \tau$?

We conjecture the positive answer to Question 3.2 with $f(n)=2^{2^{n}}$ (or even with $f(n)=n!$).

REFERENCES

1. T. Banakh, I. Protasov, S. Slobodianiuk, Syndedic submeasures and partitions of G-spaces and groups, Intern. J. Algebra Comp. 23 (2013) 1611-1623.
2. T. Banakh, I. Protasov, S. Slobodianiuk, Densities, submeasures and partitions of G-spaces and groups, Algebra Discrete Math. 17:2 (2014) 193-221.
3. T. Banakh, I. Protasov, S. Slobodianiuk, Scattered subsets of groups, Ukr. Math. J. 65 (2015) 304312.
4. A. Bella, V. Malykhin, On certain subsets of a group, Questions, Answers Gen Topology 17:2 (1999) 183-197.
5. A. Bella, V. Malykhin, On certain subsets of a group II, Questions, Answers Gen Topology 19:1 (2001) 81-94.
6. V. Bergelson, N. Hindman, R. McCutcheon, Notes of size and combinatorial properties of quotient sets in semigroups, Topology Proceedings 23 (1998) 23-60.
7. J. Erde, A note on combinatorial derivation, preprint (http:/arxiv.org/abs/1210.7622).
8. N. Hindman, D. Strauss, Algebra in the Stone-Čech compactification, de Gruyter, 2012.
9. Ie. Lutsenko, I. Protasov, Sparse, thin and other subsets of groups, Intern. J. Algebra Comp. 19 (2009) 491-510.
10. Ie. Lutsenko, I. Protasov, Relatively thin and sparse subsets of groups, Ukr. Math. J. 63 (2011) 216-225.
11. V. Malykhin, I. Protasov, Maximal resolvability of bounded groups, Topology Appl. 20 (1996) 1-6.
12. V.D. Mazurov, E.I. Khukhro (eds), Unsolved problems in group theory, the Kourovka notebook, 13-th augmented edition, Novosibirsk, 1995.
13. I.V. Protasov, Ultrafilters and topologies on groups, Siberian Math. J. 34 (1993) 163-180.
14. I.V. Protasov, Selective survey on Subset Combinatorics of Groups, Ukr. Math. Bull. 7 (2011) 220257.
15. I.V. Protasov, The combinatorial derivation, Appl. Gen. Topology 14:2 (2013) 171-178.
16. I.V. Protasov, T.Banakh, Ball Structures and Colorings of Groups and Graphs, Math. Stud. Monogr. Ser., Vol. 11, VNTL, Lviv, 2003.
17. I. Protasov, S. Slobodianiuk, Prethick subsets in partitions of groups, Algebra Discrete Math. 14 (2012) 267-275.
18. I. Protasov, S. Slobodianiuk, Ultracompanions of subsets of groups, Comment. Math. Univ. Corolin. 55:2 (2014) 257-265.
19. I. Protasov, S. Slobodianiuk, Partitions of groups, Matem. Stud. 42 (2014) 115-128.
20. I.V. Protasov, M. Zarichnyi, General Asymptology, Math Stud. Monogr. Ser., Vol. 12, VNTL, Lviv 2007.
