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Given a semigroup S , we introduce relative (with respect to a filter � on S ) versions of
large, thick and prethick subsets of S , give the ultrafilter characterizations of these subsets and
explain how large could be some cell in a finite partition of a subset A 2 � .

I. Протасов, С. Слободянюк. Вiдноснi розмiри пiдмножин напiвгруп // Мат. вiсн. Наук.
тов. iм. Шевченка. — 2015. — Т.12. — C. 7–15.

Для напiвгрупи S ми означуємо вiдноснi (стосовно фiльтра � на S ) версiї великих,
товстих та передтовстих пiдмножин S , даємо ультрафiльтровi характеризацiї цих мно-
жин та визначаємо наскiльки великими можуть бути клiтки скiнченних розбить пiдмно-
жини A 2 � .

1. Introduction

For a semigroup S , a 2 S , A � S and B � S , we use the standard notations

a�1B D fx 2 S W ax 2 Bg; A�1B D
[
a2A

a�1B:

By ŒA�<! we denote the family of finite subsets of a set A.
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A subset A of S is called

� large if there exists F 2 ŒS�<! such that S D F�1A;
� thick if, for every F 2 ŒS�<! , there exists x 2 S such that Fx � A;
� prethick if F�1A is thick for some F 2 ŒS�<! ;
� small if L n A is large for any large subset L.

In the dynamical terminology [8, p.101], large and prethick subsets are known as
syndetic and piecewise syndetic sets. These and several other combinatorially rich
subsets of a semigroup are intensively studied in connection with Ramsey Theory
(see [8, Part III]). In [6], large, thick and prethick subsets are called right syndetic,
right thick and right piecewise syndetic sets.

The names large and small subsets of a group appeared in [4], [5] with additional
adverb “left”. Implicitly, thick subsets were used in [11] to partition an infinite totally
bounded topological group G into jGj dense subsets. For more delicate classification
of subsets of a group by their sizes, we refer the reader to [3], [9], [10], [14], [17], [18].
In the framework of General Asymptology [20, Ch.9], large and thick subsets of a
group could be considered as counterparts of dense and open subsets of a topological
space.

Our initial motivation to this note was a desire to refine and generalize to semi-
groups the following statement [13, Corollary 3.4]: if a neighborhood U of the iden-
tity e of a topological group G is finitely partitioned, then there exists a cell A of the
partition and a finite subset F � U such that FAA�1 is a neighborhood of e. On this
way, we run to some relative (with respect to a filter) versions of above definitions.

Let S be a semigroup and � be a filter on S . We say that a subset A of S is

� � -large if, for every U 2 � , there exists F � ŒU �<! such that F�1A 2 � ;
� � -thick if there exists U 2 � such that, for any F 2 ŒU �<! and V 2 � , one can

find x 2 V such that Fx � A;
� � -prethick if, for every U 2 � , there exists F 2 ŒU �<! such that F�1A is
� -thick;
� � -small if L n A is � -large for every � -large subset L.

In the case � D fSg, we omit � and get the initial classification of subsets of S by
their sizes.

To conclude the introduction, we need some algebra in the Stone-Čech compact-
ifications from [8].

For a discrete semigroup S we consider the Stone-Čech compactification ˇS of S
as the set of all ultrafilters on S , identifying S with the set of all principal ultrafilters,
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and denote S� D ˇS n S . For a subset A of S and a filter � on S , we set

A D fp 2 ˇS W A 2 pg; N� D
\
fA W A 2 �g D fp 2 ˇS W � � pg

and note that the family fA W A � Sg forms a base for the open sets on ˇS , and each
non-empty closed subset in ˇS is of the form N� for an appropriate filter � on S .

The universal property of the Stone-Čech compactifications of discrete spaces
allows to extend multiplication from S to ˇS in such way that for any p 2 ˇS and
g 2 S the shifts x 7! xp and x 7! gx, x 2 ˇS are continuous.

For any A � S and q 2 ˇS , we denote

Aq D fx 2 S W x
�1A 2 qg:

Then formally the product pq of ultrafilters p and q can be defined [8, p.89] by the
rule:

A 2 pq $ Aq 2 p:

In this note, we give the ultrafilter characterizations of � -large and � -thick subsets
(section 2) and � -prethick subsets (section 3) in spirit of [6], [8], [18]. If � is a
subsemigroup of ˇS , we describe the minimal left ideal of � to understand how big
could be the cells in a finite partition of a subset A 2 � .

2. Relatively large and thick subsets

Let � be a filter on a semigroup S .

Theorem 2.1. A subset L of S is � -large if and only if, for every p 2 � and U 2 � ,
we have Lp \ U ¤ ∅.

Proof. We suppose that L is � -large and take arbitrary p 2 N� and U 2 � . We choose
F 2 ŒU �<! such that F�1L 2 � . Since F�1L D

S
g2F g

�1L, there exists g 2 F
such that g�1L 2 p so g 2 Lp and Lp \ U ¤ ∅.

To prove the converse statement, we assume that L is not � -large and choose
U 2 � such that F�1L … � for every F 2 ŒU �<! . Then we take an ultrafilter p 2 N�
such that S n F�1L 2 p for each F 2 ŒU �<! . Clearly, g�1L … p for every g 2 U
so U \ Lp D ∅.

Theorem 2.2. A subset T of S is � -thick if and only if there exists p 2 N� such that
Tp 2 � .
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Proof. We suppose that T is � -thick and pick corresponding U 2 � . The set
ŒU �<! � � is directed � by the rule:

.F; V / � .F 0; V 0/ , F � F 0; V 0 � V:

For each pair .F; V /, we choose g.F; V / 2 V such that Fg.F; V / � T . The family
of subsets of the form

PF;V D fg.F
0; V 0/ W .F; V / � .F 0; V 0/g; .F; V / 2 ŒU �<! � �;

is contained in some ultrafilter p 2 N� . By the construction, U � Tp so Tp 2 � .
To prove the converse statement, we choose p 2 N� such that Tp 2 � . Given any

F 2 ŒTp�
<! and V 2 � , we take P 2 p such that P � V and gP � T for each

g 2 F . Then we choose an arbitrary x 2 P and get Fx � T , so T is � -thick.

We say that a subset T of S is � -extrathick if Tp 2 � for each p 2 N� .
By [6, Theorem 2.4], a subset T is thick if and only if T intersects each large

subset non-trivially. In the case � D fGg, this is a partial case of the following
theorem.

Theorem 2.3. If each subset U 2 � is � -extrathick, then a subset T of S is � -thick if
and only if T \ L \ U ¤ ∅ for any � -large subset L and U 2 � .

Proof. We assume that T is � -thick and use Theorem 2.2 to find p 2 N� such that
Tp 2 � . We take an arbitrary � -large subset L and U 2 � . Since U is � -extrathick,
we have Up 2 � . By Theorem 2.1, Lp \ .Tp \ Up/ ¤ ∅. If g 2 Lp \ Tp \ Up,
then L 2 gp, T 2 gp, U 2 gp. Hence, T \ L \ U ¤ ∅.

We suppose that T \ L \ U D ∅ for some � -large subset L and U 2 � but T is
� -thick. We take p 2 N� such that Tp 2 � . Since U is � -extrathick, we have Up 2 � .
By Theorem 2.1, Lp \ .Tp \Up/ ¤ ∅. If g 2 Lp \Tp \Up then L 2 gp, T 2 gp,
U 2 gp. Hence, T \ L \ U ¤ ∅ and we get a contradiction.

Theorem 2.4. Let g 2 S and let � be a filter on S such that g�1U 2 � for each
U 2 � . If a subset L of S is � -large and a subset T of S is � -thick, then gL and
g�1T are � -large and � -thick, respectively.

Proof. To prove that gL is � -large, we take an arbitrary U 2 � and choose V 2 �
such that gV � U (using g�1U 2 � ). Since L is � -large, there is F 2 ŒV �<! such
that F�1L 2 � . We note that F�1L D .gF /�1gL. Since gF 2 ŒU �<! , we conclude
that gF is � -large.

To see that g�1T is � -thick, we pick U 2 � such that, for every F 2 ŒU �<! and
W 2 � , there is x 2 W such that Fx � T . We choose V 2 � such that gV � U .
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Then we take an arbitrary H 2 ŒV �<! and W 2 � . Since gH 2 ŒU �<! , there exists
y 2 W such that gHy � T so Hy � g�1T and g�1T is � -thick.

We say that a family F of subsets of S is left (left inverse) invariant if, for any
A 2 F and g 2 S , we have gA 2 F (g�1A 2 F).

Corollary 2.5. If � is inverse invariant, then the family of all � -large (� -thick) subsets
is left (left inverse) invariant.

Theorem 2.6. Let � be a filter on S such that, for every U 2 � , we have fg 2 S W
g�1U 2 �g 2 � . If T is � -thick, then there exists V 2 � such that g�1T is � -thick
for every g 2 V .

Proof. We take U 2 � such that for any K 2 ŒU �<! and W 2 � we have Kx � T
for some x 2 W . Then we choose V 2 � such that for every g 2 V there exists
Vg 2 � with gVg � U . Given any F 2 ŒVg �<! and W 2 � , we pick x 2 W such
that gFx � T , so Fx � g�1T and g�1T is � -thick.

A topology T on a semigroup S is called left invariant if each left shift x 7! gx,
g 2 G is continuous (equivalently, the family T is left inverse invariant).

We assume that S has identity e and say that a filter � on S is left topological if
� is the filter of neighborhoods of e for some (unique in the case if S is a group) left
invariant topology T on S .

Let � be a left topological filter on S . Then each subset U 2 � is � -extrathick and
� satisfies Theorem 2.6. Hence, Theorems 2.3 and 2.6 hold for � .

We show that Theorem 2.6 needs not to be true with � -large subsets in place of � -
thick subsets even if � is a filter on neighborhoods of the identity for some topological
group.

We endow R with the natural topology, denote RC D fr 2 R W r > 0g and take
the filter � of neighborhoods of 0. The set RC is � -large because RC � x 2 � for
each x 2 RC. On the other hand, RC C x is not � -large for each x 2 RC.

3. Relatively prethick subsets

We say that a filter � on S is a semigroup filter if N� is a subsemigroup of the
semigroup ˇS and note that, if either � is inverse left invariant or S has the identity
and � is left topological, then � is a semigroup filter.

In the case � D fSg, the following statement is Theorem 4:39 from [8].

Theorem 3.1. Let � be a semigroup filter on S . An ultrafilter p 2 N� belongs to some
minimal left ideal L of N� if and only if for each A 2 p the set Ap is � -large.
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Proof. Let L be a minimal left ideal of N� , p 2 L, A 2 p and U 2 � . Clearly,
L D N�p. We take an arbitrary r 2 � . By the minimality of L, N�rp D N�p, so
there exists qr 2 � such that qrrp D p. Since A 2 qrrp and U 2 qr , by the
definition of the multiplication in ˇS , there exists Br 2 r such that Brp � x�1r A.
We consider the open cover fBr W r 2 N�g of the compact space N� and choose its
finite subcover fBr W r 2 Kg. We put B D

S
r2K Br , F D fxr W r 2 Kg. Then

B 2 � and B � .F�1A/p. By the choice, F � U . Since p is an ultrafilter, we have
.F�1A/p D F

�1Ap. Hence, Ap is � -large.
To prove the converse statement, suppose that N�p is not minimal and choose

r 2 N� such that p … N�rp. Since the subset � rp is closed in N� , there exists A 2 p with
A \ N�rp D ∅. It follows that A … qrp for every q 2 N� . Hence, S n A 2 qrp for
every q 2 N� . It follows that there exists U 2 � such that x�1.G n A/ 2 rp for each
x 2 U . By the assumption, there exists F 2 ŒU �<! such that F�1A 2 qp for every
q 2 N� . In particular, x�1A 2 rp for some x 2 F and we get a contradiction.

Corollary 3.2. Let � be a semigroup filter on S and let p 2 N� belongs to some
minimal left ideal of N� . Then every subset A 2 p is � -prethick.

Proof. Given an arbitrary U 2 � , we use Theorem 3.1 to find F 2 ŒV �<! such that
.F�1A/p 2 � . By Theorem 2.2, F�1A is � -thick. Hence, A is � -prethick.

Corollary 3.3. Let � be a semigroup filter on a group G and let U 2 � . Then, for
every finite partition P of U and every V 2 � , there exists A 2 P and F 2 ŒV �<!

such that F�1AA�1 2 � .

Proof. We take p from some minimal left ideal of N� . Then we choose A 2 P such
that A 2 p. Applying Theorem 3.1, we find F 2 ŒV �<! such that .F�1A/p 2 � . If
x 2 .F�1A/p then F�1A 2 xp and x 2 F�1AA�1. Hence, F�1AA�1 2 � .

In connection with Corollary 3.3, we would like to mention one of the most in-
triguing open problem in the subset combinatorics of groups posed by the first author
in [12, Problem 13.44]: given any group G, n 2 N and partition P on G into n cells,
do there exit A 2 P and F � G such that G D FAA�1 and jF j � n? For recent
state of this problem see the survey [2].

On the other hand [1], if an infinite groupG is either amenable or countable, then
for every n 2 N, there exists a partition G D A [ B such that FA and FB are not
thick for each F with jF j � n. We do not know whether such a 2-partition exists for
any uncountable group G and n 2 N.



RELATIVE SIZE OF SUBSETS OF A SEMIGROUP 13

Theorem 3.4. Let G be a group, � be a filter of neighborhoods of the identity for
some group topology on G and U 2 � . Then, for any partition P of U , jPj D n and
V 2 � , there exist A 2 P and K � V such that KAA�1 2 � and K � 22

n�1�1.

Proof. We consider only the case n D 2. For n > 2, the reader can adopt the
inductive arguments from [16, pp.120–121], where this fact was proved for � D fGg.
So let U D A [ B and e 2 B . We choose W 2 � such that WW � U and denote
C D A \ W . If there exists H 2 � such that xC \ C ¤ ∅ for each x 2 H then
CC�1 2 � and we put F D feg, so F�1AA�1 2 � . Otherwise, we take g 2 V \W
such that gC \ C D ∅. Then gC � WW � U , so gC � B and B [ g�1B 2 � .
We put F D fe; gg. Since e 2 B , we have F�1BB�1 2 � .

Recall that a family F of subsets of a setX is partition regular if, for everyA 2 F
and any finite partition of A, at least one cell of the partition is a member of F .

For a subsemigroup filter N� on S , we denote by M. N�/ the union of all minimal
left ideals of N� . In the case � D fGg, the following statement is Theorem 4:40 from
[8].

Theorem 3.5. Let � be left inverse invariant filter on a semigroup S . Then the fol-
lowing statements hold

(i) a subset A of S is � -prethick if and only if A \M. N�/ ¤ ∅;
(ii) P 2M. N�/ if and only if each A 2 p is � -prethick;

(iii) the family of all � -prethick subsets of S is partition regular.

Proof. .i/ If A \M. N�/ ¤ ∅ then A is � -prethick by Corollary 3.2.
Assume that A is � -prethick and pick a finite subset F such that F�1A is � -thick.

We use Theorem 2.2 to find p 2 N� such that .F�1A/p 2 � . Then F�1A 2 qp for
every q 2 N� . The set N�p contains some minimal left ideal L of N� . We take any r 2 L
so F�1A 2 r and A 2 t r for some t 2 F . Since � is inverse left invariant t r 2 N� .
Hence, t r 2M. N�/ \ A.

The statements (ii) and (iii) follow directly from (i).

Theorem 3.6. Let � be a left invariant filter on a group G. A subset A of G is
� -prethick if and only if A is not � -small.

Proof. By the definition and Theorem 2.4, the family of all � -small subsets of G is
left invariant and invariant under finite unions. We suppose that A is � -small and
� -prethick and take K 2 ŒG�<! such that KA is � -thick. We note that G is � -large
and KA is � -small so G n KA is � -large. But .G n KA/ \ KA D ∅ and we get a
contradiction with Theorem 2.3.
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We do not know whether Theorems 3.5 and 3.6 hold for any left topological filter
� (even for filters of neighborhoods of identity of topological groups).

For a subset A of an infinite group G, we denote

�.A/ D fx 2 G W xA \ A is infiniteg:

Answering a question from [15], Erde proved [7] that if A is prethick then �.A/ is
large. We conclude the paper with some relative version of this statement.

For a filter � on a semigroup S and A � S , we denote

�� .A/ D fx 2 S W .x
�1A \ A/ \ U ¤ ∅ for any U 2 �g:

In the case of a groupG,�.A/ D .�.A//�1 so we have�.A/ D �� .A/ for the filter
� of all cofinite subsets of G.

Theorem 3.7. Let � be a left inverse invariant filter on a semigroup S . If a subset A
of S is � -prethick then �� .A/ is � -large.

Proof. We observe that �� .A/ D
S
fAp W p 2 N�; A 2 pg. Now let A be � -prethick.

We use Theorem 3.5(i) to find p 2 A \M. N�/. By Theorem 3.1, for every U 2 � ,
there exists a finite subset K � U such that K�1Ap 2 � . Since Ap � �� .A/, we
have K�1�� .A/ 2 � , so �� .A/ is � -large.

Let � be a left invariant filter on a group G and let X � G. Then �� .X/ D
fg 2 G W .gX \ X/ \ U ¤ ∅ for each U 2 �g and �� .X n U/ D �� .X/ for each
U 2 � . Now let � be left invariant and G n K 2 � for each K 2 ŒG�<! . By [2,
Proposition 2.7], for every n-partition P of G, there exists A 2 P and F 2 ŒG�<!

such that jF j � nŠ and F ��� .A/ 2 � . This statement and above observations imply
that, for any U 2 � and n-partition P of U , there exist F 2 ŒG�<! and A 2 P such
that jF j � nŠ and F�� .A/ 2 � . Moreover, for any pregiven V 2 � , F can be chosen
from V �1. Indeed, we take x 2

T
g2F gV so F�1x � V and x�1F�� .A/ 2 � .

Question 3.1. Let � be a filter of neighborhoods of the identity for some group topol-
ogy on a group G and let U 2 � . Given any n-partition P of U and V 2 � , do there
exist A 2 P and F � V such that jF j � nŠ and FAA�1 2 �?

By Theorem 3.4, the answer to Question 3.1 is positive with 22
n

in place of nŠ.

Question 3.2. Does there exist a function f W N ! N such that for any group G, a
filter � of a group topology on G, U 2 � and an n-partition P of U , there are A 2 P
and K 2 ŒG�<! such that K�� .A/ 2 � and jKj � f .n/? If yes, then can K be
chosen from pregiven V 2 �?

We conjecture the positive answer to Question 3.2 with f .n/ D 22
n

(or even with
f .n/ D nŠ).
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