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We establish a number of new sufficient conditions for the exi-
stence of global (defined on the entire time axis) solutions of nonli-
near nonautonomous systems by means of the Wazewski topologi-
cal principle. The systems under consideration are characterized by
the monotonicity property with respect to a certain auxiliary guiding
function W (¢, z) depending on time and phase coordinates. Another
auxiliary function V'(¢,z), such that lim| ;o V(t,7) = oo for all
t € R, is used to estimate the location of global solutions in the
extended phase space. The approach developed is applied to Lagrangi-
an systems and, in particular, to establish new sufficient conditions for
the existence of almost periodic solutions.

1 Introduction

This paper is a modified and extended version of our e-print [1]. Its goal
is to lay down some new sufficient conditions under which the nonlinear
nonautonomous system of ODEs

i = ft,z), (1)

VIAK 517.9; MSC 34C11, 34C27, 70H12; guiding function, V-bounded solution,
Wazewski topological principle, Lagrangian system, almost periodic solution
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where f : Q +— R" (2 C R!Y*") has a global solution z(t) which
exists on the entire time axis and possess the property that a given auxi-
liary spatially coercive function V (¢, z) (a time dependent norm surrogate)
is bounded along the graph of x(t). We especially focus on getting esti-
mates for the function V' (¢, z(¢)). The main results are obtained by using the
Wazewski topological principle [2-5|, and some of them generalize results of
V. M. Cheresiz [6].

It should be noted that the Wazewski topological principle was
successfully exploited for proving the existence of bounded solutions to some
boundary value problems in [7] and to quasihomogeneous systems in |8, 9|
(see also a discussion in [10]).

In order to apply the Wazewski principle, along with the function V() we
use another auxiliary function W (t, z) with positive derivative by virtue of
the system (1) in the domain where V' > 0. We call V and W the estimating
function and the guiding function respectively and we say that together they
form the V-W-pair of the system. Note that the term "guiding function”
we borrow from [11] (originally — "guiding potential”). Basically topological
method of guiding functions, which was developed by M. A. Krasnosel’ski and
A. L. Perov, is an effective tool for proving the existence of bounded solutions
of essentially nonlinear systems too (see the bibliography in [11,12]). But,
except [10,14], in all papers known to us, only independent of time guiding
functions were used.

In [6], the role of V-W-pair plays some function of Euclidean norm
together with an indefinite nondegenerate quadratic form. It appears that
in this case sufficient conditions for the existence of bounded solutions as
well as the estimates of their norms coincide with those obtained by means
of technique developed in [15,16] for indefinitely monotone (not necessarily
finite dimensional) systems.

We shall not mention here another interesting approaches in studying
the existence problem of bounded solutions to nonlinear systems, because
they have not been used in this paper. For the corresponding information
the reader is referred to [17-32].

This paper is organized as follows. Section 2 contains necessary defini-
tions, in particular, the notion of V-W-pair is introduced and some addi-
tional conditions imposed on estimating and guiding functions are descri-
bed. In section 3, we prove two main theorems concerning the existence
and the uniqueness of V-bounded solution to a nonlinear nonautonomous
system possessing V-W-pair. In section 4 we show how the results of secti-
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on 3 can be applied in the case where the estimating and guiding func-
tions are constructed by means of nonautonomous quadratic forms. In this
connection it should be pointed out that guiding quadratic forms play an
important role in the theory of linear dichotomous systems with (integrally)
bounded coefficients [33-35]. As an example of application of our techni-
que, we generalize results of [17,18] on the existence of bounded solutions
to quasilinear nonautonomous system with exponentially dichotomic linear
part. Finally, in section 5, the approach developed in section 3 is applied
to a quasiconvex Lagrangian system of mechanical type with time-varying
holonomic constraint. For such systems, we establish sufficient conditions
for the existence of global solutions along which the Lagrangian function
remains bounded. The case of almost periodic Lagrangian is also discussed.
As an example we consider motion of a particle on helicoid under the impact
of force of gravity and repelling potential field of force. Note that bounded
and almost periodic solutions of globally strongly convex and Lipschitzian
Lagrangian systems were studied in [26].

2 The definition of V-W-pair and the main
assumptions

Let © be a domain in R'™™ = {¢t € R} x {x € R"} such that the projection
of  on the time axis {t € R} covers all this axis, and let f(-) € C(Q2 —
R™). It will be always assumed that each solution of the system (1) has the
uniqueness property.

Definition 1. A function V(:) € C(R x R"—R) of variables t € R, x € R”
will be called spatially coercive, if for any ¢ € R the function Vi(-) := V (¢, ) :
R” + R has the following properties: the level set V;71(0) := {z € R" :
Vi(z) = 0} is nonempty and lim,_ Vi(z) = oo. If in addition V(-) €
CY(R x R"—R) and Havatiix)ﬂ > 0 once Vi(z) > 0, then V(-) will be called a
regular spatially coercive function.

Note that for each t € R and each v > 0 the level set V,™*(v) of regular
spatially coercive function V'(+) is a compact connected and simply connected
hypersurface which, thus, is homeomorphic to (n — 1)-dimensional sphere; in
addition, if vo > vy, then the set V™! ((—oo,v1]) := {x € R" : Vi(z) < vy} is
a proper subset of the set V; ! ((—o0, va)).

Definition 2. For a spatially coercive function V'(-), a global solution x(t),
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t € 1, of the system (1) is said to be V-bounded if

sup V (¢, z(t)) < oo,
tel

and V(-) is then called an estimating function.

For any U(+) € C1(Q2 — R), define
. ou oU
Upi=—+—F.
f ot + Ox
Definition 3. A function W(-) € C!(Q2+—R) will be called a guiding function

concordant with a spatially coercive function V'(-) if 2N V7H((0,0)) # @
and Wy(t,z) > 0 for all (t,2) € QN V1 ((0,00)).

Definition 4. A regular spatially coercive function V'(-) together with a
concordant guiding function W(-) will be called a V-W-pair of the system

(1).

Denote by II; := {t} x R™ the "vertical” hyperplane in R*? = R x R"
passing through (¢,0) and for any set A C R x R™ denote by A; the natural
projection of the set II; N A onto R™.

In so far, we suppose that the system (1) has a V-W-pair which satisfies
the following additional conditions:

(A): there exist numbers w*, w, (w* > wy), & > 0,c € [0,00],
and a connected component W of the set W1 ((w,,w*)) such that
for any ¢ € R the number w* belongs to the range of function
Wi(-) == W(t,-) : 4 — R, the set V! ((—o0,0]) belongs to W, and
the following inequalities hold

—eWi(t,z) < Vit,x) < Wit x) Y(t,2) € V71 ([0,00))NW. (2)

Note that from condition (A), it follows that

wo(t) := min{Wy(z) : z € V;,H(0)} > w,

w'(t) == max{Wy(z) : z € V; 1(0)} < w*, (3)

thus, the set W N W~ (w*) coincides with the set of exit points from W,
each point of 9 N W~ (w*) being a strict exit point. Denote

W = W N W (w*).
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(B): the function
a(t) := inf {Wf(t,x) cx € Vo ((0,00)) N Wt}

has the property fi)oo afs)ds = [ a(s)ds = co.

(C): for any sufficiently large by absolute value negative ¢, the Wazewski
condition is fulfilled: there exists a bounded subset M; of the set W, U
W;€ such that the set {t} x (M; NW;€) is a retract of {(s,z) € W?* :
s > t}, but is not a retract of {t} x M.

Remark 1. In the case where V() and W(-) do not depend of ¢, one can
consider the inequalities (2) as an analogue of the regularity condition for
the guiding function W (-) (see [11]). The main consequence of regularity in
this case is that the pair ¢W(-), cW(-) — V() (or ¢W(:), cW(-)+ V) is a
complete set of guiding functions for any ¢ > ¢* (for any ¢ > ¢, if ¢, < 00).

Remark 2. The condition (C) is fulfilled if for any negative sufficiently large
by absolute value t there exists a compact manifold M; with border M,
such that the interior of M; belongs to W; and the set {t} x (M; N W;€) is
a retract of {(s,z) € W?*¢ : s > t}. In fact, as is well known, M, is not a
retract of M;.

Taking into account that W#%¢ is a union of connected components of
regular level hypersurface W~ (w*), the condition (C) can be replaced by
the following weaker condition:

(C'): there exists a bounded subset M; of the set Wy U W;® which cannot
be continuously imbedded into the set {(s,2) € W*¢ : s >t} in such a
way that the image of My N W€ is {t} x (M, NW;*).

3 The existence and the uniqueness of V-bounded
solution

The lemma given below open the door to estimation of solutions of the system
(1) by means of V-W-pair.

Lemma 1. Suppose that the system (1) has V-W-pair satisfying the conditi-
on (A). Let x(t) be such a solution of (1) that (t,z(t)) € W for allt € [to, t1].

Then the following assertions are true:
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1. if V(t,x(t)) > 0 for all t € (to,t1], then
V(t,z(t)) < V(to,z(to)) + " [w* — W(to, z(to))] Vt € [to,t1];  (4)

2.4f V(t,x(t)) > 0 for all t € (to,t1) and V(t1,z(t1)) =0, then

*

C*ic*v(toaﬂﬁ(%)) + c*c*fc* [w®(t1) — W (to, z(to))]  (5)

YVt € [t(), tl];

V(t,z(t)) <

3. if the condition (B) is fulfilled, V (to,x(to)) > 0 and

/t1 a(s)ds > w* — wy, (6)

to

then there exists T € (to,t1) such that V(r,z(1)) = 0.

Proof. Let the condition (A) is fulfilled. Put v(t) = V(¢t,z(t)), w(t) =
= W(t,z(t)). The inequality (4) obviously follows from v(t) < c*w(t),
t € [to,t1]. In order to prove the inequality (5), denote by ¢ any point where
v(t) reaches its maximum on [tg,¢;] and observe that

Mm—mmzlbwm+fhmaz;t%@&—i;%@a:
o) o), o) (et e olt) vlin)

Since v(t1) = 0, then w(t;) < w®(t1) and we get (5).

Now let the condition (B) is fulfilled and v(tg) > 0. If we assume that
v(t) > 0 on (tg, 1), then

/ﬁdﬂﬁg/ﬁﬂﬂdzwm%wﬁ@<ﬁ—w*

to to
This contradicts the inequality (6). O
Put
wo := inf wo(t), W :=supw’(t), (7)
teR teR

vi= lgg_lg sup {V;(z) — ¢ Wi(z) 1 2 € M0V, ((0,00)) } . (8)

Now we are in position to prove the following theorem.
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Theorem 1. Assume that the system (1) has a V-W-pair satisfying the
conditions (A),(B),(C) (or (C')), and v < oo. Let there exists a number
V* > c¢*w* + max {v, —c*wy} such that

s (V7H([0, V) nwW) Cc Q

(here cls means the closure operation). Then the system (1) has a V-bounded
global solution x.(t), t € R, which for all t € R satisfies the inequalities

cic* .
Vi(t,z(t)) < sup w(s) — inf  we(s)] < 9
(a0) S g | s w6 =t ol )
cxct 0
< _
= ¢+ c* (w UJO),
oo < W(t, 2. (1)) < (10)

where 74 (t) and T_(t) are, respectively, the roots of equations
T4+ t

/ a(s)ds = w® — wy, / a(s)ds = w® — wp.
t T

Proof. From definitions of v and V* it follows that there exists a sequence
tj — —o0, j — 00, such that

cfw* 4 sup {th () — Wy, (z) s 2 € My, N V;;l ((0, oo))} <V*  (11)

In view of condition (C) (or (C')) from Wazewski principle it follows that for
any j there exists a point xg; € My, such that the global solution z;(t), t €
I;, which satisfies the initial condition z;(t;) = zo; has the property

(t,l‘j(t)) ew Vte [tj,OO) N Ij.
Let us show that

Uj(t) = V(t,l'j(t)) <V* Vte I; N [tj,oo). (12)

For any natural j, it is sufficient to consider the following cases: (I) v;(t) >
0 for all t € I; N (t;,00); (IT) vj(t;) > 0, there exist t, > t; and t* > t, such
that v(t,) = v(t*) =0, v(t) > 0 for all t € I; N (t*,00), and if ¢, > t;, then
vj(t) > 0 for all t € (tj,t); (III) there exist increasing sequences tj,t; in
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I;iN[t;,00), k € N, such that ty, <}, tpy1. > 17, tf = sup{t € I;}, k — oo,
and

vj(te) = 0;(t) = 0,
?)j(t) >0Vt e (tk*,tZ), ’Uj(t) <0Vte (Ij \ Uiozl(tk*,t;;) N [tj,oo).
In the case (I), observe that for sufficiently small 6 > 0 we have
vj(t;) + W —W(tj,zo5)] < Fw +v+6 < V™

Now the inequality (12) immediately follows from (4).

In the case (II), observe that

v(t") + ¢ [w' =W (", 2 (t7))] < [w' —wo(t")] < ¢ [w" —wo] < V™.
Thus, similarly to the case (I), we obtain the estimate v;(t) < V* for all
t € I; N[t*, 00). Next, if t, > t;, then W(t;,z;(t;)) < W(ts,z;(ts)) < wO(ty)
and from (5) it follows that

cyC*
Cx + C*

Cy
Uj
Cx + C*

Cy
cx +c*

(w0 () = W (tj,2(t;))] < vesvr

Vit € [t L.

v;(t) < (t;) +

If now ¢, = t*, then the inequality (12) holds true. And if ¢, < t*, then for
any successive zeroes ti,ta € [ty,t*] of function v;(t) from (5) it follows that

cicF
cy +C*

v;(t) < [wO(t2) — wo(t1)] < Cc’f S —w] <V ovie [t

Thus, we obtain inequality (12) in the case (II), and now it becomes obvious
that this inequality is valid also for the case (III).

The above reasoning allows us to make conclusion that in view of defini-
tion of V* the graph of x;(t), t € I; N[t;,00), is contained in a closed subset
of W. This yields inclusion [t;, c0) C I;.

Now we are in position to prove the existence of V-bounded solution x,(t)
by the known scheme (see, e.g., [6,9,11]). Namely, if we denote by z(¢, to, x¢)
the solution which for ¢ = ¢y takes the value z, then setting &; := z;(0), we
obtain the equalities

xj(t) = x(t,O,xj(O)) = x(tvov‘fj)v te [tj>oo>'
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Having selected from the sequence &; € cls (VO_I([O, V)NWy) C Qo a
subsequence converging to ., put z.(t) := z(t,0,z.). Using reductio ad
absurdum reasoning it is easy to show that on the maximal existence interval
I of this solution we have the inclusion (¢, z.(t)) € cls(V =1 ([0, Vi) N W).
Therefore I = R.

Now we are able to establish a sharper estimate for v, (t) := V (¢, z.(t)).
Namely, for any ¢ € R such that v,(t) > 0, in virtue of Lemma 1, the
point ¢ lies between two successive zeroes t,(t),t*(t) of v.(t) each of which is
contained in the segment [7_(t), 74 (¢)]. Then the inequality (9) easily follows
from (5) once we put there to = t.(t), t1 = t*(t). O

The following theorem establishes sufficient conditions for the uniqueness
of V-bounded solution.

Theorem 2. Let ) be a subset of the domain Q and let

Q= {(t,z,y) e RxR™: (t,z) € Q, (t,y) € Q}.
Suppose that there exist functions V(-) : CLR™" = R), U(-) € CH{Q*—R),
n(-)€C(Ry—Ry), and B(-) €eC(R x Ry—Ry) such that:

1) the function V (-) is spatially coercive and the function n(-) is positive
definite;

2) the function

. U (t,z, U (t,z, U (t,z,

Uty (b, ) 1= 0G0 4 PEEEf(t ) + SR f (1)
satisfies the inequality

Uir.p(t,z,y) 2 Bt r)n(U (e, y)) V(zy) € V7 ((—oo, ) N9,

with V (t, z,y) :=max{V (¢, z),V(t,y)}, and takes positive value at any point
(t,z,y) € Q° such that x #y and U(t,z,y) = 0 (if the set of such points is
nonempty);

3) for any sufficiently large r > 0, the functions B(-), h(u) :=

Y ds
/1 @(u>0), and

b(t,r) := max {|U(t,x,y)] : (zyy) € f/t_l((—oo,r]) N Q*}

satisfy the conditions
+oo
B(s,r)ds = oo, liminf _btr)

; < 1.
0 f—koo ’fo B(s,r) ds‘
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Then the system (1) cannot have two different V-bounded solutions x(t),
y(t), t € R, whose graphs lie in ).

Proof. Suppose that the system (1) has a pair of solutions z(t), y(t), t € R,
such that (¢,z(t)), (t,y(t)) € Q and z(t) # y(t) for all t € R. Let us show
that at least one of these solutions is not V-bounded.

Using reductio ad absurdum reasoning we suppose that there exists
sufficiently large 7 > 0 such that |V (¢, z(t),y(t))] < r for all t € R.
Consider the function w(t) := U(t,z(t),y(t)). By condition, the functi-
on u(-) is nondecreasing. Hence, there exist limits w, = limy_,_ oo u(t),
uw* = limy_,o u(t) (either finite or infinite).

Firstly, suppose that u, > 0. If w(0) = 0, then by condition 2) @(0) > 0.
Hence, in this case, as well as in the case where u(0) > 0, we have the
inequality u(t) > 0 for all ¢ > 0. Now the condition 2) yields

0 t
h(u(t)) — h(u(to)) > [ B(s,r)ds +/0 B(s,r)ds ¥ty >0, Vt > tg.

to
This implies that

to

h(b(t,r)) — h(u(0)) + B(s,r)ds > / B(s,r)ds Vit > to,
0 0

and we arrive at contradiction with assumption 3).

Now suppose that u, < 0. Then there exists ¢’ such that u(¢') < 0. Thus,
u(t) < u(t') for all t < ¢'. Then

u(t’) s t
/ d > t B(s,r)ds = h(lu(t)]) = h(ju(t)]) >

(t) n(—s)
/ B(s,r)ds
0

from whence, as above, we again arrive at contradiction. ]

t/

> + [ B(s,r)ds
0

Remark 3. If fol ﬁ du < oo, then the condition 3) can be replaced by the
following one:

h(b(t,r)) + h(b(—t,r)) — 2h(0)
_ftﬁ(s, r)ds

lim inf < 1.
t—o0
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4 Studying V-bounded solutions by means
of quadratic forms

Denote by (-,-) a scalar product in R", and let || - || := /(). In this
section, the case will be considered where the guiding function is a ti-
me dependent nondegenerate indefinite quadratic form (S(¢)z,z). In more
detail, the mapping S(-) € C! (R — Aut(R")) assumed to have the following

property:

(a): for any t € R the operator S(t) is symmetric and there exists a
decomposition of R"™ into direct sum of two S(t)-invariant subspaces
L4 (¢), L_(t) such that the restriction of S(¢) on L4 () (on L_(#)) is a
positive definite (negative definite) operator.

Observe that since the subspaces L, (t), L_(¢) are mutually orthogonal,
the corresponding projectors Py (t) : R™ — L (t) are symmetric.

It appears that the function W (t,x) = (S(t)z,x) generates a set W
possessing the Wazewski property (C). For the sake of completeness we give
here a proof of the corresponding statement.

Lemma 2. Let W(t,x) := (S(t)x,z) and let S(-) has the property (a). Then
for any w > 0, tg € R there exists a retraction of the set W~ (w) to the
ellipsoid {to} x (thl(w) NL(t0)).

Proof. From S(t)-invariance of subspaces L (t), L_(¢) it follows that
Py (t)S(t) = S(t)P+(t) and, as a consequence, we have the representation

S(t) = (Py(t) + P_(£) S()(P+(t) + P_(t)) =
= PL()S()PL(t) + P_(t)S(t)P_(t).

Put
S4(t) := Py (t)S(t)Py(t), S—(t) =: P_(t)S(t)P_(t).

Obviously, the kernel of the operator Sy (¢) (operator S_(t)) is the subspace
L_(t) (subspace L4 (t)), and the restriction of this operator on L () (on
L_(t)) is a positively definite (negatively definite) operator.

Now observe that for arbitrary t € R and w > 0 there exists a retraction
of W, H(w) = {x € R™: (S(t)z,2) = w} to the intersection of this set with
the subspace L (t). In fact, one can define such a retraction by a mapping
x — w(t,z)Py(t)x, provided that the scalar function w(t, ) is determined
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from condition (S (t)w(t, )z, w(t,x)x) = w for all z € W, (w). Since
w > 0, then W, (w) N L_(t) = @, and hence, (Sy(t)z,z) > 0 for all
x € W (w). Therefore

w

EROIEO)

Now it remains only to show that the set {to} x Wt Yw)=w~— ( )ﬂHtO
is a retract of W1 (w). Introduce the operator R(t) := /S2(t)
S_(t). Then we get

S(t) = R()(P(t) - P_(t) = (Py(t) — P_(t) R(2).

w(t,x) =

—1
The quadratic form (S(¢)z, z) by means of the substitution z = [ R(t)] Yy

is reduced to ((P4(t) — P_(t))y,y). Obviously, P, (t) — P_(t) is a symmetric
orthogonal inversion operator:

(Py(t) = P_())" = Py(t) = P_(t), (Py(t) = P_(t))> = E.

From the representation via the Riesz formula (see, e.g., [33, c. 34]) it
follows that the projectors Py (t) smoothly depend on parameter. Therefore
the mutually orthogonal subspaces Ly (¢) and L_(¢) have constant dimen-
sions n4, n— and define smooth curves 4, v— in Grassmannian manifolds
G(n,n4) and G(n,n_) respectively. Since G(n,n, ) is a base space of a prin-
cipal fiber bundle, namely, G(n,ny) = O(n)/O(ny) x O(n_), then there
exists a smooth curve Q(¢) in O(n), which is projected onto ~(t), the
operator ()(tp) being the identity element E of the group O(n). Obviously,
Li(t) = Q(t)Li(to) and, as a consequence,

Pi(t) = Q) Pe(t))Q (1)
From the above reasoning it follows that the change of variables
-1
z=[VRW®]  Qt)VR(t)y

reduces the quadratic form W (t,z) := (S(t)z,x) to W(to,y) = (S(to)y,y),
and then the mapping

RxR" > {to} x R": (¢, ) <tO,FQ {\/7)}_133>

determines a retraction of the set W~ (w) to the set W—1(w) NIy, . O
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Now consider the quasilinear system
&= f(t z):=At)r +g(t, z) (13)
and assume that the following conditions hold:

(b): the mapping A(-) € C(R — Hom (R")) is such that sup;cp ||A(t)]| =:
a < oo and the linear system & = A(t)x is exponentially dichotomic
on R; i.e. there exists a mapping C(-) € C! (R — Aut(R")) possessing
the property (a) with S(¢) = C(t), and, in addition,

sup ||C(t)]| =: ¢ < oo, inf |det C(t)| =:0 >0,
teR teR
<(2C(t)A(t) + C'(t))x,a:> > 2|2 VieR, z€R"

(see, e.g. [34,35]).

(c): there exist k > 0 and ¢(-) € C1(R — (0, 0)) such that sup,cp % =:

| < oo and the mapping g(+) € C (R — R") satisfies the inequality

lgt, @)l < K llzll + () V(t,2) € RTF™

The well known approach to establish sufficient conditions for the exis-
tence of bounded solutions to (13) is based on the method of integral equa-
tions which allows to apply different versions of fixed point theorems (see,
e.g. [17,18]). Our goal is to show that by means of V-W-pair one can not
only establish the existence of bounded solutions (in the case where ¢(t) is
bounded), but also show how their asymptotic behavior depends on () as
t — £oo.

For any t € R, put
AE(t) = ”111Ha><;1<0(t)1:,x>, Ao(t) == ”H‘l‘in1<C(t):c,x>,

AL (1) = min {(C(t)z,z) : ||z]| = 1,2 € Lo (t)}

C,min

and

m

oo Lt 2 (ot gl) (Gtnmr 4 1) ) i vz
O F(S) if 0<r<é,

where d := 1 —c(k+1), m:==a+k+1.
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Theorem 3. Let the conditions (b),(c) hold true and let the numbers c, k,l
satisfy the inequality

ek +1) < 5.

Then the system (13) has a solution x.(t), t € R, such that
[z (@)]| < rep(t) VE€R, (14)
where 1 18 the root of equation
c c?
F(r)=F (g) + S [Til? Ne(s) = inf Ag(s) |
If, in addition,
lg(t,x) — g(t, )l <kl —yll V(¢ 2z,y) € RM?",

then x.(t) is a unique solution of the system (13) for which the ratio % is
bounded on R.

Proof. First, we show that the system (13) has the following V-W-pair
(C(t)z, )

pA(t)
where rg is an arbitrary number greater than c¢/d. In fact, from the inequali-
ties

]

V(t,z):=F <M> —F(r), W(taz)= (15)

d |zl 2 0]

i [@Q(t)]f < S L@+ Pl + pllal] +2 5 el <
ol o lell
ORI

5 | 2 o 0 200l = 2ept0e] - 205 el 2
lz)? _ Dl
> 2~ % 0
and equality
F(r) — F(ro) = ds” —cs g
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it follows that Wy (t,z) > 2(drg — crg) > 0 and |V(t,z)| < Wy(t,x) once
lx/e(t)|| > ro > ¢/d, or, equivalently, V (t,z) > 0.

Next, it is easily seen that in our case

w'(t) = 1gAG(8),  wolt) = rgAa(h).
If we pick w,, w* in such a way that

wy < 18 %2{& Aot), w*>rh ing AE(8),
€

then, in view of Lemma 2, to satisfy the conditions (A),(B),(C) it is sufficient
to define

W= W (wa,w?)), My = W, H([0,w*]) N Ly (2).

Note, that in our case ¢, = ¢* =1 and a(t) > 2(drg — crg) > 0.

Lastly, from (b) it follows that inf;cr )\C min(t) := 01 > 0. Hence, ('/Lgl(l)f) <
Z’—I for all t € R, all x € M, and this yields v < co. Now, by the Theorem 1,
there exists a solution z.(t), ¢ € R, of the system (13) such that

2
V(t,2.(t) < -2 |sup A(s) — inf Ag(s)
2 s>t s<t

The estimate (14) is easily obtained by letting 7 tend to ¢/d.

In order to prove the uniqueness of x.(t), it remains only to apply the
Theorem 2 in the case where U(t,z,y) := W(t,x —vy), V = Vi(t,z) :=
2112/ 2(t), n(u) = u, Bt,r) =: (1= 2(k +1)) /e, b(t,r) = 4er. O

Remark 4. The number 7, does not exceed the largest root of the quadratic
equation

c d c 2 [
— -2 —+—=|)r—F(-= ~5 Sup [su pys inf A5(s)| =0.
( > ( ) 2d? te[g S>It) cls) = s<t c(s)

Remark 5. The assertion of the Theorem 3 remains true if we require that the
function g(-) is defined and satisfies the condition (c) not on the whole R*"
but only on a domain §2 which contains the set W1 ([w,, w*])NV=1([0, V*])
where V-W-pair is defined by (15) and V* = w* + max{v, —w,}.
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Example 1. Consider the following singular boundary value problem for
scalar second order differential equation

d z .
I (p(t)) —w(t)z=Z(t,z,2), (16)
2(—00) = z(400) = 0, (17)

where p(-) € C1(R+ (0,00)), w(-) € C(R+ (0,00)) are bounded functions
and the function Z(-) € C(R3 +— R) satisfies a global Lipschitz condition:
there exists a constant ¢ such that

\Z(t,z1,91) — Z(t, 20, 2)| < /(@1 — 22)2 + (y1 — 12)2
V{t,z1,y1, 22,92} C R.

Let us show that if there exists a function ¢(-) € C}(R ~ (0, 00)) such
that

2.0,0] < pl0), Jim o) =0, sup T =1 < o0
and
k+1 <6,
where

0 := min {inf p(t), inlgw(t)} , k:=/{max {1,supp(t)} ,

teR te teR

then the problem (16)—(17) has a unique solution z.(t) = O(p(t)).

By letting x1 = 2z, x2 = 2/p(t), the equation (16) becomes equivalent to
2-D system of the form (13) with

40=(ity "0 969= (50, 010pi0)

Set (C(t)z,x) = x122/0. Obviously this is a nondegenerate indefinite
quadratic form of Morse index 1. One can easily show that

d
dt
ck+10) <1/2, g, 0l < (t), lgt,x) —g(t,y)ll < kllz -yl

IC@O)I = 1/(20) =: ¢, (Ct)z,2) Ay = |l2ll?,
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Now the unique solvability of the problem (16)—(17) in the class of functions
z(t) = O(p(t)) follows from the Theorem 3.

Note that if we slightly simplify our task by replacing the condition (17)
with sup;cg |2(t)| < oo, then the sufficient condition for solvability of the
corresponding problem takes the form

sup |Z(t,0,0)] < oo, k<
teR

(obviously, in this case ¢(t) = const, and [ = 0). At the same time, by
applying results of [18] combined with estimates for Green function derived
in [34,35], we can only obtain a rougher condition

teR teR

2k63/2 \/max {sup p(t),sup w(t)} <1

(note that the expression under the square root is not less than ¢).

Now let us lay down sufficient conditions for the existence of V_-bounded
solutions in the case where f(-) € C(R**" s R") is essentially nonlinear,
e.g., |[f(t z)||/||z|| = o0, x — co. We are going to construct a V-W-pair in
the form V(t,x) = F(Vi(t,x)), W(t,x) = (S(t)z,x), Vi(t,x) = (B(t)x,x)
under the following conditions:

(d): for any t € R, the operator B(t) is positively definite and there exist
projectors Py (t), P_(t) on invariant subspaces L (t),L_(t) of operator
S(t) such that the restriction of S(t) on Ly (¢) (on L_(%)) is a positively
definite (negatively definite) operator.

(e): there exist functions y(-) € C(R — (0,00)), I'(-) € C((0,00) — R),
A(+) € C((0,00)— (0,00)) such that

{IER"5<%1(igx,:c>:v}<S(t)f(t’ z),x) 2 () (v) Yo >0,
max [(B(t)f(t,z),2)| <v()A(v) Vv >0,

{z€R":(B(t)z,x)=v}

and
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(f): the following inequalities hold true
sup At (t) < oo, inf A_(t) > —oco, limsup AT (t) >0,
teR teR t——o00

p—(t)

M(t)
inf ——= =16 > —00, sup
ERONN R0

=:¢ <00,

where AT () and A_(t) are, respectively, the maximal and the minimal
characteristic values of the pencil S(t) — AB(t), AT (¢) is the minimal
characteristic value of the pencil Py (t)[S(t) = AB(t)] |1, (1), M(t) is
the maximum of moduli of maximal and minimal characteristic values
of the pencil B(t) — uB(t), and p_(t) is the minimal characteristic
value of the pencil S(t) — uB(t).

(g): there exists a number vy > 0 such that

I'(v)-T
21 (vg) 4 &vg > 0, M2—§ Yv > vy,
v — Vg 2
% 2I'(v) + &w
—— > dv = o0.
/1,0 M@ +ev

We have the following result.
Theorem 4. Let the system (1) satisfies in Q := R the conditions (d)-
(9). Then there ezists a solution x.(t) of this system such that

BOn 0200 <7 (5 e a0 <o wer,

s>t

where

_ [ 20(w) + &u
F(v) := /UOQA(U)—l—gudu

and vy s the root of the equation

_ Y N
Fv) =5 E&EA () —inf A (1)

If in addition 2y(t) + p—(t) > 0 for all t € R,

(S(t) (f(t,z+y) = f(t,2)),y) > 1()(B(t)y,y) V(t, 2,y) € R,
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and
+oo +
/ 2?§?(+) M!;(S() &= e i . mai?s)ft)’('s?_(t)‘} <
max s), |A=(s TR Ly
0 ’fo AT (), @ 3

then z.(t) is a unique solution of the system (1) satisfying the condition

sup(B(t)z.(t), z.(t)) < oo.
teR

Proof. Put W (t,z) := (S(t)x,x), Vi (¢, z) :== (B(t)x, ). Since

M(t) = Bz, u=  min (@)

{zeR™:V, (t,x)=1}

ma.
{mER”V t.x)=1}

(see, e.g., [36]), then

HV (t, x)] ‘ < 2y()AVi(t, 7)) + ME)Vy(t,2) <
< (1) AV (¢t z)) + Vit z)),
Wy(t,2) > P (OT(V (t,2)) + (Vi () >
> (1) 2L(Vi(t,2)) +EVi(t, 2)),

once Vi (t,z) > vy, and it is naturally to define in this case

~

V(t,z) = F(V,(t,z)). (18)

Obviously that the inequality (2) and condition (B) are satisfied with
e =" =1, a(t) = ~(t)(2T (vo) + Evo)-

Taking into account that the function Wy(x) has the unique critical point
x = 0, we have

0 . — )\t
w-(t) : max W(t,x) = A" (t)vg,
)= pn By 1V (82) = AT (Do
wp(t) := min W(t,x) = A_(t)vo.

{zeR™: V4 (t,x)<vo}
If we choose numbers w,,w* in such a way that

wy < wo = inf A_(t)vg, w* > w’ = sup AT (t)wo, (19)
teR teR

and define W := W~! ((w,,w*)), then the condition (A) will be satisfied.
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As has been already shown in proof of Theorem 3 the family of sets

My =W ([0,w*]) N Ly (2)
satisfy the condition (C). Now to prove the existence of V-bounded solution
it remains only to show that v < co. It is easily seen that
min{W;(x) : & € My, Vi (t,z) > vo} = A\ (t)vo > 0,
w*
V t? = Tr /0
oy ) = 5w

and in view of condition (f) we have liminf; . . (w*/AT(t)) < co. Hence,
v < 00.

In order to prove the uniqueness of V -bounded solution of the system
(1), introduce the function U(t,x,y) = (S(t)(z — y), (x — y)). It is easily
seen that

Uir.p)(tz,y) > (29(t) + p—(0)(B(t)(z — y),x — y) >

(1) + p-(1)
= s e (0, gy 5k

U(t,2,y)| < max{A™(t), A\-(O)|HB#)(z — y),z —y).
Now the uniqueness result follows from Theorem 2 if we define
o 2(t) +p(t)
) S @ (01}
b(t,r) := dmax{AT(t), A_()|}r, n(u):=u.

5 V-bounded solutions of Lagrangian systems

Consider a natural Lagrangian system subjected to smooth time-varying
holonomic constraint. The Lagrangian of such a system can be represented
in the form

L(t, q,4) = 3(A(t,9)d, ) + {alt, q), 4) + 2(t, q) (20)

where ¢ = (q1,...,qn) € R™ are generalized coordinates, A(-) : R*™
Aut(R™), a(-) : RY™ s R™ &(-) : R1™ — R are C%-mappings, and
besides, A(-) takes values in the space of positive-definite operators. Our
goal is to show that if the Lagrangian has certain directional quasiconvexity
property, namely



402 V. Lagoda, I. Parasyuk

(a): there exist positive numbers x, R and a function ¥(-) : R1™™ s R,
such that from

3(AM Q)4 @) + P (t,q) > R
it follows that

oL oL .

9, T ag, 2" (3(At, a)d,9) + T(t,q)) (21)

(summation over repeating indices),

then under some additional technical growth conditions imposed on
A(+),a(-), ¥(-) the Lagrangian system possesses a global solution along which
the function 1(A(t, q)¢, ¢) + ¥ (¢, q) is bounded.

Remark 6. It is easilily seen that the inequality (21) yields

<(«4(t7 q) + ;afg;q)qo yy> >

It should be also noted that the Assumptions (H4), (H5) in [26] implies
that

(A(t,q)y,y) V(t.q,y) € R (22)

>~ =

g =g >
58+ i 2 (Il + el

once ||¢]|? + ||¢/|? is sufficiently large.
In what follows, we shall also assume that:
(8): there exists a nondecreasing coercive functions o) : Ry — Ry,
O() : Ry — Ry such
O (¥(t,q)) < (At,a)g,q) <O ((t,q)) V(t,q) € R7™
(7): there exist numbers 6 € [0, 1] and K > 0 such that from
s(Ata)d,¢) +P(t,q) > R

it follows that
‘1 <3«4(t,Q) : > 9(2(t,q) +‘1’(t,q))q‘ Lo Q)' <

2 ot g ‘ ot
1 0+1
<& (jAcand +¥ea)

R being the same number as in («).



Existence of V-bounded solutions ... 403

(0): there exist a nondecreasing function Z(-) : R — Ry such that

[(a(t, q), )|

max — 22D I = Lo
llyll=1 <A(t,q)y,y>< (¥(t,q) VY(t.g) eR

In order to apply the results of Section 3, introduce the functions

Wi(t,q,q) :== (At,q)q + a(t, q),q)

Vit q,d) ==V (3(A(t,0)d, 4) + ¥(t, ) , (23)

where V(-) € C}Y(R + (—1,00)) is a strictly increasing function which for
r > R is defined as

B B 1H(T/R) if 0= 17
Vw%ﬁ{ﬁkﬂ—Rkﬁﬂl—@ it 6e0.).

Lemma 3. From V (t,q,q) > 0 it follows that
‘Vf(t7q7Q)‘ < —Wi(tq,q) and Wyt q.4) 2 kR,

: N AN 2 27 . :
where f(t,q,q) = (,(gqé’) <%—{; — gt—an. - %q&) is the wvector field

generated in the phase space R?*™ by the Lagrangian system.

Proof. Note that W = g—éqi. The equation of motion

aoL_or
dt 9¢  Oq
yields
dor . oL oL
atog "~ og " T 0g "
Obviously,

V(tg,d) 20 < 5(At9)d,4) + ¥(tq) = R.
Then by assumption («) we have

Wf(t, q,q) > K (%(A(t,q)q, q) +¥(t,q)) > kR once V(t,q,q)>0. (24)
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In order to estimate the function V}(-), introduce the Hamiltonian in a
standard way:

OL i~ L= 2t 0)id) - ot q).

As is well known, % = %I;I , hence

d
dt

<1<A(t )4, >+\p(t,q)) _ dH(S,tq,q’) N d@c(li, q) N d\If((ii, 9 _

_ 1 /oA . .\ | O0(2(tg +V(tq). I¥(q)
_2< ot q’q>+ d4; AR T

By assumption (), if V(¢,q,¢) > 0, then
Vit a,0)| =

-0
— (;(A(t,q)q, q) + ¥(t, q))

& (3o +ve.a)| <
< & (SUA0.00.0) +90.0)) < 1700

O]

Lemma 4. For the functions V (-) and W (-) defined by (23), the correspondi-
ng functions wo(-), w®(-) defined by (3) satisfy the following estimates:

wo(®) 2 dolt) = win {{a(t,0),0) = V2[R =9t q)]{Alt: )0 0} |
t (25)

w0 <) = max {(o(t0).0) + VER =V OAT O ) |
t (26)
wo = nfun(t) > — max 1/6(s) V2R=S)+E()], @)
WY = ilel]g wl(t) < Srer%éi’)é} O(s) [ 2(R—s)+ "(s)] . (28)

Proof. We know that

VN 0) = {(q.4) € R*™: (A(t, )¢, 4) = 2[R — V(t,q)], Ve(q) < R}
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and

(a(t,q), @) — [{A(t, q)q, a)] < W (t,q,q) < (a(t,q),q) + |(A(t,9)d, )|

By assumptions () and (§) we have

[{a(t, @), @) < E(T(t, q))\/ O(L(t,q))-

Now to obtain the required estimates it is sufficiently to observe that

(A ) )l |y 0) < VIAL DG AT 0a4) |y10) <

< \2IR ~ (1. )IB(¥(1,9))
and ¥(t,q) > 0. [

Now we are in position to prove the following theorem.

Theorem 5. Let for the Lagrangian (20) the assumptions (o )—(3) be valid.
Then the corresponding Lagrangian system has a global solution q.(t) which

or some pOSZ e numober o € , W — Wo K SatiSes e mequa 1UlEeS
iti b 0, (w° R ti the i liti

LA, 0u(1) 4u(1), Gu (1)) + U (£, qu(t)) <
Sf@,R(i[ sup @’(s) — inf (s ])

t<s<t+o t—o<s<t
wo < (A(t,q)d + alt, q), q) < °,

where

for(z) = Re* iFo=1
0,rR\%) = [(1—9)2—1—1%1_9]ﬁ f oelon),

and the functions wo(t), W°(t) and numbers wy, w° are defined by (25)-(28).
Proof. Let w, < wp and w* > w" be arbitrary numbers, where wg, w°
are defined by (27), (28). The function W(-) in new coordinates ¢, p :=
A(t,q)d+a(t, q) takes the form of an indefinite nondegenerate quadratic form
(p,q). From this it follows that the set W := W~ ((w,,w*)) is connected
and for each t € R the function W;(-) restricted to the set V;~* ((—o0,0])

takes its maximal and minimal values on the boundary V;7'(0). Hence,
V=1 ((-00,0]) C W and by Lemma 3 the conditions (A) and (B) are valid
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with ¢, = ¢ = K/k and a(t) > kR respectively. Obviously, the functions
T4 (t) defined in Theorem 1 satisfy in our case the inequalities

0
W —wo
t)—t < .
[7(%) < kR

Now we define the set
My :={(g,4) eR*™ : 4= q— A" (t,q)alt,q), (At,q)q,q) < w*}.

Obviously, 0 < Wi(q,q) |m, = (A(t,q)q,q) < w*. Since by assumption (53)
(A(t,q)q, q) is spatially coercive, and (22) implies that

qu‘ = <<2A(t7 q) + 8,48(; ? Qi> q,Q> > g(A(t, 04q,q9), (29)

then (A(t,q)q,q) is regular spatially coercive. For this reason, M; is a
compact manifold with boundary.

In order to show that v defined by (8) is bounded, note that in view of
assumption (3) the function ¥(¢,q) is bounded from above by the constant
O H(w*) on the set where (A(t,q)q, q) < w*, and now, taking into account
the definition of V'(-), it is sufficient to prove that

Sup max {<A(t7 Q)Qa Q> tq=q- A_l(tv Q)a(ta Q)’ <"4(t7 Q)qv Q> < w*} < 00.

teR
(30)
But from () for such points that (A(t, q)gq, ¢) < w*, we obtain

a(t,q), q)| < Vw*E© ' (w*)),
VI(A~L(t,q)a(t,q), alt,q)) < E(O ' (w")).
Hence,
(A(t,q)lg — At q)a(t, )], [q — A (t, 9)alt, q)])
= (A(t,q)q,q) — 2(a(t, ), q) + (A" a(t, q),a(t, ) <
< ' + 2RO () + 2O (w)),
and (30) is proved.

Let us show that the condition (C) is valid. Since in (g, p)-coordinates
the function W(q,p) = (p, q) does not depend on t, it remains only to prove
that for any fixed ¢ € R the set

OMy = {(q,p) €R*™ : p = A(t,q)q, (A(t,q)q,q) = w"}
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is a retract of W, ' (w*) = {(¢,p) € R : (p,q) = w*}. Observe that for any
g # 0 from (29) we get

d
56% (A(t,e7q) q,q) > 5e* (A(t,€7q) q,q) -

This implies that for any fixed ¢ the mapping 7 — €2™ (A(t,e7q) q,q) is a
diffeomorphism of R onto (0, 00). Hence, for any (¢, z) € R™ x (0, 00) there
exists a unique 7(qg, z) such that

T (A(,€7q) 4, Q) |rer(ge) =2 7 (a,(A(t,q)q,q)) = 0.

By the inverse function theorem the mapping 7(-) : (R™ \ {0}) x (0,00) — R
which we have constructed is smooth. Now the required retraction is defined
by the mapping

g e @PD) gy @) g (t, eT(%(M))q) q.

Now the existence of searched solution g, (t) follows from Theorem 1. O

Corollary 1. If the assumptions (a)—(9) are valid with V() = ®(-), then
the solution q.(t) has the property sup,cp |L(t, ¢«(t), ¢«(t))| < oo.

The next two lemmas will be useful for verifying the assumptions («)

and (7).

Lemma 5. Let there exist positive constants k, Ry, c1, ca such that

‘ <(A(t, q) + %qut{@ Qi) yy> S k>0 Vitg) € R 1)
min > K> yq) € ",
lyl|=1 (A(t,9)y,y)
aq)(t q) 1 <a(t, Q) + %;(J)Q%y>2
"22q; > kVY(t,q) + — max - 32
dq; 4+ 5 lyll=1 (A(t, 9)y,y) (32)
once VU(t,q) > Ry,
da(t,q)
7QZ7y
9v(t,q) S _ ax w < ¢ (33)

—q; > C, jant
0q; lyll=1 \/(A(t, @)y, y)
once V(t,q) < Ry;
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Then under the assumption (§), the assumption («) is valid with

\/5(02 + E(Ro)) + \/2(02 + E(Ro))2 +4r(c1 + /iR()) ?

R:= Ry + o

Proof. From (31) it follows that

oL  OL. . da(t,q) .\ | 0%(t q)
¢t 74 2 t,9)q, i is — -
20,5 T 9g,¢ K(A(t,q)q Q>+<a( Q) + 9, 1)t o, ¢
If we put y = [l4[7'¢ € $1(0) == {y € R™ : [y = 1} and
2= +/{A(t,q)d,q) /2, then it is sufficient to show that the inequality

2+ VU(tq) >R

yields

da(t,q)
‘<a(t, Q) + a@qiq q;, y> ’ ot 6@)(t, q)
(A(t, )y, y) 0
But if ¥(¢,q) > Ro then in view of (32) the quadratic polynomial (with
respect to z) in the left-hand side of the last inequality takes only nonnegative

values for all y € S;(0). And if ¥(¢,q) < Ry, then taking into account
assumptions (33), (), it is no hard to show that the greatest root of this

polynomial (if it exists) does not exceed VR — Ry < /R — V(t,q) for all

y € S1(0). Hence, in this case, the polynomial also takes nonnegative values
for z > /R — ¥(t,q). O

Lemma 6. Let there exist a number 6 € [0,1] and nonnegative numbers
cs3,...cg such that

KZQ—\/i

¢ — x¥Y(t,q) > 0.

(49,
ot )

max N L < W0t )+ ey Yt q) € RMT™
lvl=1 (At 9)y,y) s V() tea Vi)

9q; ?

(A(t, 9)y,y)

< es U2t ) +¢5 V(t,q) € RMT™,

max
llyll=1

ov(t
P < vt b Wing) R

Then the assumption () is valid with

K=c3+V2s5+cr+R <c4 + V2R V¢4 + R*1c8> .
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Proof. Let again z := \/{A(t,q)d,q)/v/2. Then we have

1 /oAt q) . .\ , 0(2(t.q) +V(t,q).  9V¥(tq)
_ : <
‘2 < o b q> * da; ©T " |

< (63\116(75, q) + 04) 242 <C5\I’0+1/2(t, q) + 06> 24Ut g) + e <
< <03(2:2 +U(t,q))? + C4> (22 +U(t,q)+

+V2 (c5(z2 +W(t,q))" 2 4 c6> V22Ut q)+

+C7(22 + W(t, q))(H'1 +cg < K(z2 + W(t, q))e‘H.

O

Let us now discuss the uniqueness problem. Usually, to guarantee the
uniqueness of bounded solutions (in particular, almost periodic solutions)
to Lagrangian systems, the convexity of Lagrangian function is required. In
Cieutat’s paper [26] it is assumed that the function % : R?™ s R2m
is globally Lipschitzian with time independent Lipschitz constant, and the
convexity condition is formulated as follows: there exists a constant ¢ > 0
such that

R R

Vu:=(q.,q), v:=(q".") € R*™

It should be noted that for Lagrangian (20), in the case where A(t, ¢) nonli-
nearly depends on ¢, the above global conditions look unnatural (see the
Remark 7 below).

For Lagrangian (20), we are going to relax the conditions of [26] via
the Theorem 2. (However, here for simplicity we consider the case where
A(-), a(-) and ®(-) are C*>-mappings).

Put
~ 1 1
¥t ,0) = max { AW )+ B0 ) 5 AV + 90
and denote
HaL (t,u)  OL(tw)
N(t;r) := sup M (w0) € T (—ooyr]) su# 0

[l = vl|
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Let A(t,q) and A(t,q) be, respectively, the minimal and the maximal
eigenvalues of operator A(t, q). Define
(

t,q")
At, )

Htyr) = max{ 1 q € \I/;l([O,r]),q" € \Iftl([(),r])} .

For any set Q C R'2™ we define the set

0F = {(t,u,v) eRIMM . (£ u) € Q, (t,0) € Q}

(see Theorem 2).

Theorem 6. Let the assumptions (B8) and (§) be valid and let for a set
Q C RYF2™ there exist numbers v > 0 and d > 1 such that Q* C V~=1([0,7])
and

(P50 — 2552 (s — w)

o(t;r,d) := inf S(u,v) €, uF vy >0.

Ju — vl|*4
Suppose in addition that

t

. o o(s;r,d)
I(t;r,d) == | N(s ) ’—>oo t — +oo,
and if d =1, then also
n (1 + /U(t; 7"))
lim inf < 1.

t—o00 I(t;r,1)
Then the Lagrangian system cannot have two different global solutions

q;(t),t € R, j=1,2, such that (t,q;(t),q;(t)) € QforallteR, j=1,2.

Proof. In order to apply the Theorem 2, we introduce the function
OL(t,u) OL(t,v)
U(ta U,’U) = ( aq; - aq;/ (qz, - q:/) =
= <“4<t7 q,)q/ + a(tv q/) - A(t7 q,/)q// - G,(t, q//)a q/ - q”>'

In the same way as in Lemma 4, one can show that

[(A(t,q)q + al(t, q), )] < 1/O(¥(t,q)) [ 2[r = W(t,q)] +=(¥(t,q))
V(t.q,q) € Q,
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and since (A(t,¢)q",q") < 2908 (T(t, ¢")), then

(At d)d +a(t,d),q")] <
< VIA® ") [VIAE )0 d) +E (8 q)] <

< 908, ") [Vl — U] + 2 (U d))| Vit v) €0

Now we have
U (t,u,0)] < 20* () [1 + Ot 7“)} V(t,u,0) € O, (35)
where

w*(r) := 1/0O(r) max [ 2[r — 9] +E(s)} .

1<s<r

Hence, in the case under consideration, the function b(¢,7) from
Theorem 2 satisfies the inequality

b(t,7) < 20°(r) (14 /(7))
Nextly, the inequality
Ut u,0)] < N(t:7) |u— |

together with conditions imposed on L(-) yields

. OL(t,u OL(t,v
0ty = (25 - 2 ()2 ol ) — o 2

Bt )|U (¢, u, )|

if (t,u,v) € QF where B(t;r,d) = o(t;r,d)N~%¢t,r). Now if we put
h(u) = ["s™%ds, then the reasoning which we used when proving the
Theorem 2 yields the assertion of the Theorem 6. O

It appears that instead of the convexity condition of Theorem 6 it is
preferable to verify an analogous assumption for corresponding Hamiltonian

H(t,z) = H(t,q,p) = = (A7 (t, ) (p — a(t, q)),p — a(t,q)) — B(t,q) (36)

(z:=(q,p))-

N | =
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Let Id,;, and 0, be the identity matrix and the zero matrix of dimensions
m respectively. Introduce the matrices

—~1dym O, (O Tdy,
( w) =, )

Put 2’ := (¢,p'), = (¢",p") and denote by V(t,2,2") the function
obtalned from V ( , ,v) after the substitutions ¢’ = A~Y(t,¢)(p' — a(t,q)),
q"= A7t ¢")(p" — a(t,q")). Obviously,

/(t, 2, 2") = max {H(t,z") + ®(t,q') + ¥ (t,q) ,
H(t,2")+®(t,q") + (¢, q”)} )

Theorem 7. Let the assumptions (3) and () be valid and let for a set
Q C RY2™ there exist numbers r > 0 and d > 1 such that Q* C V=1([0,7])

and
(-2 )

’_ //||2d

o(t;r,d) := inf QF, 2/ #£2" ) >0.

2=

Suppose in addition that lim;_ 4o ‘fg o(s;r,d) ds‘ =00 and if d = 1, then

also

In (14 /I(E:))
lim inf

<1
feo Q‘fo s;r, d)ds‘

Then the system with Hamiltonian (36) cannot have two diﬁerept global
solutions (q;(t),pj(t)),t € R, j=1,2, such that (t,q;(t),p;(t)) € Q for all
teR, j=1,2.

Proof. In order to apply Theorem 2 in the case of Hamiltonian system

2= JH.(t,z2),
introduce the function U(2/, 2") := (¢ —q",p' —p"). After the substitutions
p = ‘9%(;;“)’ p’ = a(t/,v) this function coincides Wlth the function U (¢, u,v)

which appears when proving the Theorem 6. Hence, the estimate (35) implies
that

U(ZI, Z”)

< 2(r) |1+ /()|
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once V(t,2,2") <r, and the inequality
e M 1 ! "2
U, 27)| < Sl = 27|

together with definition of g(¢;r,d) yields
5 OH(t,7)) OH(t, 2"
U(Z/,Z//)(JH;,JH;) — <] < 8(2/ ) . a(zl/ )> ,Z/ N Z//> >
> o(t;r, d)||2' = 27|12 > 245(t; v, d)|U (2, 2") |2

if V(t,2,2") < r. The rest of the proof is based on the same arguments as
the proof of previous theorem. O

As a corollary of Theorems 5, 7 we can get new sufficient conditions for
the existence of almost periodic solutions to Lagrangian systems. Namely,
consider the case where the following assumption is valid:

(¢) the mappings A(+,q) : R — Hom(R™), a(-,q) : R — R™, &(-,q) : R —
R together with their first order partial derivatives in ¢ are almost
periodic uniformly for ¢ € R™ and the function ¥,(q) := infer V(¢, q)
is coercive.

Denote
A*(q) :=supA(t,q), au(q) :=sup|a(t, q)l
teR teR
Since
1 2
H(t,z)+ P(t,q) + ¥ (t,q) > — Ol + U.(q),
(t,2) + ®(t,q) + ¥(t,q) A (g) (llp]l (9)) (9)

and the function in the right-hand side of this inequality is coercive, then for
any r > 0 the set

V(r) =

=ds| J{(p.q) eR*™: H(t,p,q) + ®(t,q) + U(t,q) <7, wo < (p,q) <’}
teR

is compact (see (27), (28) for definitions of wp, w").
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Theorem 8. Let the assumptions () — (€) be valid. Put

r=for (2 (W’ —w))

(the function fo r(-) is defined in Theorem 5) and suppose that there exist
numbers o, > 0 and d > 1 such that

OH(t,7)) OH(t, 2"
<I < a(Z/ ) _ a(Z// )> ’Z/ o Z//> > Q*Hz/ o Z//||2d

for all (t,2',2") € R x V(r) x V(r). Then the set V(r) contains one and only
one global solution of the system with Hamiltonian H(t,z), and this solution
18 almost periodic.

Proof. By Theorem 5 for any s € R, the Hamiltonian system
2= JH.(t+s,2) (37)

has a global solution taking values in V(r). Moreover, the same reasoning as
in the proof of Theorem 7 shows that the set V(r) contains no other global
solutions of system (37). Now to complete the proof, it remains only to apply
the Amerio theorem (see, e.g., [37]). O

Observe now that under the conditions imposed on L(-) the Hamiltonian
belongs to C?(R'*2"™—R). If we denote by H// (t, z) the partial Hesse matrix

m
{W} , then it is easily seen that
qi4; ij=1

(o omsy .
— < [/01 ANt s¢' + (1 —5)¢") ds] W —p"), _p,,> B
_ < [/01 Hy (t,s2' 4+ (1 —5)2") ds] d—-q").qd - q"> .

Since the first summand of the right-hand side of this equality is positive
definite quadratic form with respect to p’ — p” we arrive at conclusion that
for the case where d = 1, in order that the function o(¢;r, d) be well-defined
and positive, it is necessary that

. 1 82<_A*1<t7q)p7p> 32<A71(t,q)a(t, q)7p>
=1 {_2 [ 04;04; Wh] i [ 0q:0q; Wb] B

19%(A~Y(t, q)alt, q),alt, q)) D*®(t,q)
2 9q:0q; i “0q;0q; } >0

(38)
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for all (t,q,p) € ), and it is sufficient that the last inequality holds for all
(t,q,p) such that ¢t € R and (p, q) belongs to the convex hull of the set Q..
Observe that the last set is contained in the convex hull of the set V=1([0,7]).
If we treat the left hand side of the inequality (38) as a quadratic polynomial
with respect to u = ||p||, then we arrive at the following result.

Lemma 7. Put

al(tv Q) = 1/(2A(t7Q))7 ﬁl(tv Q) = HAil(tv Q)a(tv Q)Hy
n(t,q) = (A7t q)a(t, ), a(t,q)) + U(t,q),

s 32<A_1(t,q)y,y>n,n,
lyll=1, n]=1 9q:0q; v
ALt q)alt,

(t, q)a( Q)nmj
0q;0q;

as(t,q) ==

)

Ba2(t,q) := max

[Inll=1
[ 8°®(t,q) 32(«41(t,q)a(t,q),a(t,q)>}
t,q) ;= min — i
n2(tq) nlll[ 0q:0q; 0q:0q; i

and suppose that for any t € R the function V(t,-) : R™ — R is quasiconver
and that there exists v > 0 such that for all (t,q) € ¥~ ([0, r]) the inequalities

Oél(t, Q)uQ - 2ﬁ1 (t7 Q)U +m (tv Q) < r,ou > 07
yield the inequality

as(t, q)u? + 2Ba(t, q)u — ya(t, q) < 0.

Then the inequality (38) is valid for all (t,q,p) such that t € R and (q,p)
belongs to convex hull of the set V ([0,r]).

Remark 7. Since for any fixed ¢t and y € R™ the function (A~1(t,-)y,y) is
positive, it cannot be globally strictly concave. And if aa(t,q) > 0 at some
point (¢, q), then the inequality (38) fails for all p with sufficiently large norm.
Example 2. Consider a Lagrangian system which describes motion of a par-
ticle constrained to move on time-varying helicoid under the impact of force
of gravity and repelling potential field of force. The vibrating helicoid is given
in 3-D space by the equations

r = (g1 cos g2, q18in g2, X()q2),  (q1,q2) € R?,

where x(-) € C3(R+ (0,00)) is a given function. Suppose that the function
of repelling potential field is II(r) = —k (||r|* + |r[|*), where k > 1 is a
parameter.
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Having assumed for simplicity the mass of particle and the acceleration
of gravity to be unities, we get the following expression for kinetic energy

1. . . 1
Sl =5 (dF + () + ab)a3) + x(DxX (a2 + X7 (B)a3.

Since the term x(¢)x(t)g2q2 + %XQ(t)qg gives the same contribution into
the equations of motion as the term —%X(t) X(t)g3, we obtain the following

Lagrangian

L(t,q,q)

l\DM—*

2

(@ + (620 + ) &) - (a2 — 2xOTDa+
+h [ + P06 + (6 + X3 (1)a3)°] -

Hence, in this case a(t,q) =0,

<A(t,Q)q, Q> = QI + () + 4i) &,
D(t,q) =k [q} + + (G + X*(1)g3)%] — x(t)g2,

where {(t) := x*(t) — ylkx(t)ié(t)
We suppose that the function y(t) satisfies the following conditions:

1 dix(t) .
Fx(t) = e > 1, S o, i =1,2.3, 1k < k.
X0 = 21 || = <0 =12 s
Obviously that in this case £(t) > x2(t)/2.
Put

U(t,q) =k [qf +&t)a +2(aF + XQ(t)qg)Q} :

Then

oL AL . R
9 + 96,0 = (A(t,q9)q,4) + qrda+

+2k [q7 + €(1)g5 + 2(q7 + P (t)a3)%] — x(H)q2 >
> (A(t, q)q, 4) + 2% (t, q) — VAt q)d,q) +20(t, q) >
> k(R k) (3(A(t,0)¢. ¢) + ¥ (t,q))

;”?\H

if (L(A(t,q)d,q) + ¥(t,q)) > R, where k(R, k) := 2— R™%/4(2k)~1/4. Hence,
the assumption () holds for arbitrary R > (32k)~1/3.
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Since (A(t,q)q,q) = ¢+ ( )+ qi ) q3, then the assumption (3) is valid
with appropriately chosen functlon O(-) and with ©(¥) = 2 /.

(-
Now let us verify the assumption (). We have
1 /OA(tq) . . X(#)
- <
e IS

x(t)
'3@(15 ,q) +V(t,q)) .

' (At 9)ds @) = 7 (A(t, @) ),

aCh’ gi| < <A(t7Q)Q7Q>X
2
x |:4k\/q% + [i((?)] a2 + 12k (2 + 2()ad)** + 1] <

< VI{A(, 9)d, 4) %
X <4l<: ig}g max {1, Xi((tz) } a3+ X2 (t)g3 + 12k(q? + Xz(t)q§)3/2 + 1> <
< VAR )4, 4) %
x [(6(20) /4 + 2R +15)) B/t ) + 2R)PA2 + ) + 1

2200 o m{‘ (}\p( 0 < (50 + 1) V().

The same arguments as in the proof of Lemma 6 allows us to assert that for
$(A(t,q)d,d) + ¥(t,q) > R the assumption () is valid with § = 1/4 and

K =K(Rk) =2 [6 (2K 2(2k)%4 (2 + né‘)} +

+R7YVA (505 4+ m3) + R¥4V2 (2(%)3/4(2 1) + 1) '

Finally, Lemma 4 yields

w® < max /4R —s)s/k = R\/2/k, wo > —R\/2/k.

s€[0,R]

Hence, by Theorem 5, there exists a global solution ¢.(t), t € R, satisfying
the inequality

5 (A 0o (0)d(0),6.(1)) + W(1,0.(8)) < (K, B),
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where

4/3
3V2RK (R, k) 4 R34

r(k,R) := 1n(RK)VE

Observe, that if we put R = (2k)71/2, then r (k,(2k)"'/3) = 1 and
r (k, (2k)_1/3) < Ck?/?, where a constant C' > 0 does not depend on k.
One can show that

K (k (2k)‘1/3> < 3.78k + 1.59K%/4 + 11.78kY/4+
+(5.30F + 1.195) kM2 41,2805 < (17.15 + 5.30F + 1.28n5 + 1.1n%) k,
and

C < (15.28 + 4.47n} + 2.28n5 + 0.9315)"/3 .

From this it follows that
2 _
(3. () + (D) @3.(1) < Ck~T?/2 VteR,
and

@) + 2@, (t) < T2k~ vt eR.

Now consider the case where the function x(-) is almost periodic together
with its derivatives up to the third order. In order to apply Lemma 7, observe
that

_ 1 _ 5 36 —X°()
“00= ey 0= e e
Au(t,q) = Ba(t, q) =0,

and it is no hard to show that in our case

Y2(t,q) > 2k [min{1,£(t)} + 2(¢F + X*()B)] ,

Now it is easily seen that the conditions of Lemma 7 will hold true if on the
set where U(t,q) < r there holds the inequality

3¢ — x*(t)

B0 2 g7 Y 0) < K [min{ L0} + 206} + (O]
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2_,2 .
Observe that sup,,> (ig(t)iug)é = 16x92(t) < 1613 and &(t) > x?2/2. Thus, in

the case where r = r (k, (2k)~Y %), we get the following sufficient condition
for almost periodicity of solution g.(t) in terms of restrictions on parameter
k:

Ck?*/® < 4kmin{1,x?/2}, k> max{1,73}

or

c 9/7
> > | Tminf{1,x2/2] |
k_max{laUQ’ |:4min{1,XZ/2}:| }

6 Conclusions

The technique applied in this paper for studying essentially nonlinear
nonautonomous systems by means of a pair of auxiliary functions allows us
to generalize a number of earlier known results concerning the questions of
existence and uniqueness of bounded, proper and almost periodic solutions.
In the case where the estimating function is a quadratic form with varying
matrix, the estimates obtained for V-bounded solutions can be efficiently
applied to describe asymptotic behavior of solutions when ¢ — 4o0. For
Lagrangian systems with certain directional quasiconvexity property, there
exists a V-W pair which allows to establish sufficient conditions for exis-
tence of V-bounded solutions. Our approach yields uniqueness theorems for
V-bounded solutions as well. As a consequence of that, we have obtained
new sufficient conditions for the existence of almost periodic solutions to
Lagrangian systems.

This work was partially supported by the Fundamental Research State
Fund of Ukraine (Project 29.1/025).
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ICHYBAHHZA V-OBME2KEHIX PO3B’413KIB
HEABTOHOMHIX HEJIIHINHNX CUCTEM
TA TOIIOJIOTTYHUN ITPUHIIUII BA>KEBCBKOTI'O

Boaodumup JIATOJ[A, Teop ITAPACIOK

Kuiscbkuit namionanbuuii yuisepcurer imeni Tapaca [leBuenka
ByJ1. Boslomumupcenka 64, Kuis 01601
email: pioQuniv.kiev.ua

BeranoBiieHO HU3KY HOBUX JIOCTATHIX YMOB iCHYyBaHHsI 1J100abHUX (BU-
3HAYEHNX Ha BCiil aificHiil ocl) po3B’si3KiB HEIHIHIX HEABTOHOMHUX CHCTEM
3a JIOMOMOTOIO TOIOJIOTivHOro mpuHIumy BaxkeBchbkoro. [locrmimkyBani cu-
CTEMH XapPaKTEPUIYIOThCSA BJACTUBICTIO MOHOTOHHOCTI BiJTHOCHO JESKOI JI0-
nomizkHOT Hanpsimaol dyskiil W (t, z), 3amexuol Bij yacy Ta (hasoBuxX KOOp-
nunat. Tamra monomixma dynkiia V (¢, z) Taxa, mo m, e V (£, ) = o0
A Bcix t € R, BUKOPHUCTOBYETHCS NJIsT OIIHIOBAHHS PO3TAITyBaHHS IJIO-
OaJIbHUX PO3B’A3KiB y posinupenomy da3zoBoMy rpocTopi. Pozpobiiennii mi-
XiJT 3aCTOCOBYETHCA TI0 JIATPAHIKEBUX CHCTEM, 30KpeMa, /sl BCTAHOBJIEHHS
HOBUX JIOCTATHIX YMOB iCHYBaHHS Maii>Ke ITePIOINYHUX PO3B’s3KiB.



