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In the paper [1] it has been studied subharmonic functions in the
annulus A, = {z: 1/r < |z| <r},r > 1.In this paper a two-parameter
approach for investigation of subharmonic functions in the annulus
Asr ={z: s<|z|<r}, s <1 < r is suggested. The consideration
of functions subharmonic in the annulus A, , allows to describe their
behavior at approaching to the inner and outer boundary circles of
such annulus. Nevanlinna characteristic of functions subharmonic in
such annulus is introduced. A counterpart of Jensen’s theorem for
subharmonic functions in such annulus is proved. An estimate of a
subharmonic function maximum by its Nevanlinna characteristic is

established.

1 Introduction

Extensions of Nevanlinna theory to annuli have been made by many authors
[5] — [16]. The main tools the authors used were a lemma on index of
meromorphic functions along a circle |7], [8], a decomposition lemma due to
G. Valiron [12], argument principle. But these tools are unusable for direct
investigation of subharmonic functions on annuli. In the paper [1] it has been
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studied subharmonic functions in the annulus A, = {z: 1/r < |z| < r},
r > 1, which is invariant with respect to the inversion.

In so doing we apply the Riesz representation theorem ([3], p. 123)
and the fact that the integral mean of a harmonic function in an annulus

2
% | h (tele) df is a linear function of logt [4] to obtain a counterpart of
0

Jensen’s theorem. But these tools and methods are unusable for investigation
of subharmonic functions in the annulus A, , = {2z : s <|z| <r},s <1<,
in particular they do not make possible to obtain a counterpart of Jensen’s
theorem for such annulus.

In this paper we suggest a two-parameter approach for investigation of
subharmonic functions in the annulus Ag,. The consideration of functions
subharmonic in the annulus A, gives possibility to describe a behavior of
such functions at approaching to the inner and outer boundary circles of the
annulus A .

We prove a version of Jensen’s theorem, we introduce the Nevanlinna
characteristic. An estimate of a subharmonic function maximum by its
Nevanlinna characteristic is established.

2 A counterpart of Jensen’s Theorem

Let As, ={z:s<|z] <r}and Ay, ={z: s <|z]| <7}, where s <1 <.
Let u (z) be a subharmonic function in Ay, and let p be its Riesz measure.

2
Denote by I (t,u) = % Ju (te‘a) df the integral mean of a corresponding
0

function w (z) over the circle of radius ¢. Define

1 r

1 n (t) 1 n (t)
Ng(s,r,u)—logs/ " dt+logr/ " dt, (1)

s 1

where n () is the distribution function of the Riesz measure y of the function
u,ie. n(t) =p(Af,)ift >1and n(t) = —p(A4};) if t <1,7n(1) = 0. Note
that n (¢) is the continuous on the right.

Theorem 1. Let u(z) be a subharmonic function in As, and let p be its
Riesz measure. Then

1 1 log (r/s)

ogr T W iog17s) T T 1og (15 log ()

No (s,75u) = I (r) (2)
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Proof. Using an explicit representation of Green’s function [17], [18] for the
annulus Ly = {z : ¢ < || <1} with ¢ = 1/r? and making homothety, after
some transformations one can get the Green’s function for A,

Clog(cl/r) (I :_ ¢,
G20 = Tog (s/r) log( )“g‘ -0l

MY
-3 () (- )o@

m=1

and z = |z] €7, ( =[] '
By Poisson-Jensen Theorem ([3], p. 139), for z € A, we have
u(z) =h(z) -p(2), (4)
where h (z) is the harmonic continuation of the function u (z) from 0A,,

into As ., p(2) :Af G (2,¢)du(€).

Using (4), consider the expression

I(ty,u)—I(Lu) I(1,u)—1(t2,u)

N 5
logt; —log1 logl —logty (5)

s < t; <1 <ty <r. Thereof that I (¢,h) is a linear function of logt [4] in
Ag » we have

I(t,h) = 1(1,h)  1(1,h) = I (t2,h)
log t1 —logto

= 0. (6)

Note that I (¢,u) is a convex function of logt in [s,r|. Applying the Fubini
theorem we obtain

21
I(t.p) = / = / G (1e.) do ) dys (©). (7)
0

As,r

Since G is subharmonic in A,,, G = 0 on 0A,,, then I (¢,G) is conti-
nuous on (s,r). Hence I (t1,p) — 0ast; —r—0, I (t2,p) — 0 asta — s+0.
From (5) using (6) and proceeding to the limit as t; — r — 0, and then
to — s+ 0 we get

log (/)

I(ryu)—1(Lu) I(Lu)—1I(su)
logrlog(1/s)’

log r —logs

=1(1,p)

(8)
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Calculating I (1,p) using Fubini’s Theorem, we obtain

1 log(r/s)
1) fogr 10 iog 175y =1 W tog (175 logr =
_ 1 oe (16 1 o [

The sum of two last integrals is equal to Ny (s,7;u). Thus (9) gives (2).

3 Nevanlinna characteristic

Definition 1. Let u(z) be a subharmonic function in Ag, gr,, non identical
—00. The function

2m 2w
1 0\ db 1 0\ df
T . — + 0\ Y + 0y
o (5, 75) logr/u (re )27r+log(1/s)/u (se )27r
0 0

27
log (/s) / 4 ( 0\ d0
_ 2o\ Wy~ 1 1
log (1/s)logr Y (e )27r’ RBi<s<l<r<Bhy, (10)
0

is called the Nevanlinna characteristic of u(z), where u™ = max (u,0).

Theorem 2. Let u, u1, uz be subharmonic functions in Ag, gr,, non identical
—o0. Then

1) Ty (s,r5u1 +ug) < To(s,r5u1) + To (s,m5uz2) + O (1),
To (s,r;Au) = ATy (s, 75u) for A >0, where Ry < s <1 <71 < Ra.

2) The function log(1/s)logrTy (s,r;u) is nonnegative, increasing and
convexr with respect to the logarithm of variable 1 < r < Ro. As the
function of variable s, it is nonnegative, increases when s decreases in
the interval (Ry,1) and is convex with respect to log (1/s) .

Proof. The property 1 follows from the inequality (u; + u2)+ < uf + u;
and definition (10) of Tp (s,7;u). Since u™ is subharmonic, applying the

counterpart of Jensen’s theorem (2) to u™ we obtain

log (1/s) log 7Ty (s,r;u) = log (1/s) logr Ny (s,m;u’) . (11)
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Next, fixing sg, R1 < sp < 1, we have

1
d
(105 (1/50) og o (0,73 ") / "W+ n(r)log (1/s0) . (12)

Fixing rg, 1 < rg < Ra, we have

To

—sa (log (1/5)og 1o (s.rosur)) = = (s) ogro + [ “

——dt. (13
. ; (13)
1

From (12) and (13) we see that the function log (1/s)logr Ny (s,r;u™)
satisfies 2).

From (11) we conclude that log(1/s)logrTy (s,r;u) possesses the
properties listed in 2).

Define
27 dg 2 ”
1 1 — (it
‘) = R Y4
mo (5,73 4) log r /u (re ) 27 log (1/s) /u <8€ > 2’ (14)
0 0
Ry < s <1< 7 < Ry, where u~ = (—u)". Now we can rewrite (2) as follows

Theorem 3. If u(z) is a subharmonic function in Agr, r,. Then

To (R1, Ro;u) = No (Ry, Ro;u) + mo (R1, Ra;u) —

log (Ro/R) [ (g d0
_1og(§/1§f)12320/“ (69)

This is a counterpart of the first fundamental theorem for subharmonic
functions on annuli.

4 Relation between By (s,r;u) and Tj (s, r;u)

Set By (k,t;u) = max{M (k,u); M (t,u)}, k <1 <t, where M (t,u) =
=max {u(z):|z| =t}
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Theorem 4. If u(z) is a subharmonic function in As,, then for s < p <
1 <o <r we have

log o log (1/p)

To (p,o3u) < By (p,o;ut) <
log (0/7) (b i)

27

1 ,
< C1 (5,7, p,0) Ty (5,7 0) + Ch (5,7, py ) ~ / ut (%) do,  (15)
T
0

where

log (1/s)logr

log (r/s) G2 (s, p,0) < Ci(s,7,p,0) <

< max{ci (s,r,0);¢c2(s,7,p)} < max{r ? log r; pts log (l/s)}, (16)
p—s

c(s,r,0) = MIOgr—i—QTialogr,
e (5,7, p) = Ei EZ;’; log (1/5) + 2 log (1/5). (17)

Proof. The left inequality in (15) is obvious. To prove the right inequality
we apply Poisson-Jensen formula ([3], p. 139) to the function

27
ut (2) = 1 / {u+ (re”) Py (z,7) +ut (se”) P (z, T)}dT —
0

- [eEoae.  as
As r

where G (z,() is the Green’s function (3) for A, ,.

Let & = oe'?. Taking into consideration
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after some calculations we obtain

log (a/5) | =T )
log (r/s) + 2mz_: o™ (r2m — g2m)

Py (&1,7) =

Pa(61,7) = 2 ((’;7;) +2) -

From (18), since the contribution from the Riesz mass is negative, using the
definition of Tp (s, r;u) we get

cosm (6 — 7). (20)

u™ (&) < max {Py (&1,0)logr; P (€1,0) log (1/s)} T (s,7u) +

+1/u+ (¢7) dr x {Pl (£1,0)+ P, (51,9)}‘ (21)

T 2

Now let & = pe?. Using

ﬁ—l—FQZ() cosm (0 — 1),

|6 — reir|?

2 2
WS_1+QZ(S> cosm (0 —7),
6 — seir|? P

after some calculations we obtain

o S 0 m 2m 52m

Py (&2,7) = m + 2mzl o EiQm — 32’”3 cosm (6 — ), (22)
2m

Py (62,7) = 22 TQm_p gcosm(Q—T). (23)

Repeating the above considerations with slight difference to u™ (&) we
come to

ut (&) < max {Py (&2,0) logr; Pa (&2, 0) log (1/5)} Tp (s,7;u) +
27

+71T/u+ (') dr x {Pl (52’9)*2'132 (52’9)}. (24)




Subharmonic functions on annuli. A two-parameter approach 375

It is easy to verify that P (£2,0) < Py (&1,0) and Py (£1,60) < Pa(&2,0)
for s < p <1 < o < r. This fact and relations (21), (24) yield that u™ (&)
and u™ (&) are less than or equal to the value

max {P; (&1,0)logr; Py (§2,0) log (1/s)} To (s,75u) +

2
1 .
+-— /u+ (e) dr x Co (s,7,p,0), (25)
™
0

where

CQ(S’T’p’O.):maX{Pl(glae)_"PQ(glae)‘P1(£2,9)+P2(£2,(9)}‘

2 ’ 2

Choosing the & and & so that u™ (&1) = M (o,u™), u™ (&) = M (p,ut)
from (25) we obtain the right inequality of (15), where

Cy (s,r,p,0) = max{P; (&1, 0)logr; Pa (£2,0)log (1/s)} .

From inequalities P; (§2,6) < Py (&1,0) and P (£1,60) < P (§2,6) we get

log (1/s)logr log (1/s)logr
Wpl (51,0)+WP2(§1,9)<01 (S,T‘,,0,0'), (26)
log (1/s)logr log (1/s)logr

log (r/s) P&, 0) + log (r/s) Py (&2,0) < Ci(s,mp,0).  (27)

From (26) and (27) we obtain

log (1/s)logr

log (r/s) Ca (8,1 p,0) < C1(s,7,p,0).

The other inequalities in (16) follows from the inequalities

s) o r+o

Pl(fl,ﬁ)logr<%10gr+2r_ologr<T_Ulogr, (28)
Py (&2,0)log(1/s) < mlog(l/s) +2pis log (1/s) <
< P 0e (1)), (29)

p—S
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Now we compare a growth order of Ty (s,7;u) and By (s,r;u). We will
consider functions subharmonic in the punctured plane C\ {0} with a couple
of veritable orders.

A set of veritable orders Ord F' for nonnegative functions of two variable
F(r,r), 7 > 1, r > 1 was introduced in [2|. If Ord F contains only one
element, then it is called a couple of veritable orders.

By (Lemma 2, Lemma 3, [2]) if F'(7,7) = Fy (1) + Fa(r) or F (7,1) =
max {Fy (17); Fy(r)}, where Fy (1), F5(r) are nonnegative functions, then
F (7,7) has a couple of veritable orders.

In view of this it is convenient to make change of variable s = 1/7, 7 > 1,
and consider the functions Ty (7,7;u), By (7,7;u) instead of Ty (s, r;u) and
By (s, 7r;u).

Before comparing a growth order we will give the following corollary,
which is the interesting comparison between By (7,7;u) and Ty (7,7r;u) on
a certain double sequence. The corresponding result for meromorphic in C
functions was proved by Shimizu T. (see [19], p. 43).

Corollary 1. Let u(z) be a non-constant subharmonic function in C\ {0}
and K > 1. Then

B .
lim 0 (7—7 r; u)

T— N ; K
7= log 7log 1o (7,73 u) {log To (7, 5 u) }

=0. (30)

Proof. Set ¢ (y,z) = Ty (¥, e";u), y,z > 0. Fix yg. We apply Lemma 1.2
([19], p. 14) with ¢ (yo,z). This is possible since u is non-constant and so
unbounded in C\ {0}. Hence By (19,7;u) — oo with r, By (7,70;u) — 00
with 7 and so does Tg (79, 7;u), Tp (7, r0; u) by Theorem 4.

Then we can find a sequence z,, such that ¢ (yo,x) < K1¢ (yo, ) for
Ty < T < xn+{log+¢(yo,mn)}_K1, Xy — oo and ¢ (yo, T,) — 00 asm — 00.

Applying Lemma 1.2 ([19], p. 14) again with ¢ (y,x0) we can find a
sequence Y, such that ¢ (y,z9) < K20 (Ym,xo) for ym < y < ym +
{log+¢(ym,xo)}7K2, Ym — 00 and @ (Ym, Tg) — 00 as m — 0.

Note that ¢ (y,x) = ¢ (yo, )+ & (y, x0) — ¢ (Yo, o). From here and consi-
derations above we have

¢ (Y, ) < K (Ym,xn) + (K — 1) ¢ (yo, 20) (31)

for z, < x < xn, + {10g+¢(907xn)}_1(17 Ym < ¥y < Ynm +
{log+¢(ym,xo)}7K2, where K = max {K;, Ko} > 1.
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We choose logo = z,,, logr = z,, + {10g+¢(y07xn)}_Kla logn = Ym,
log 7 = ym + {log* ¢ (ym,z0)} "* (s =1/7,p=1/n) in Theorem 4. This
gives

BO (777 ag; U) <

exp | {log ¢ (yo, )} "' | +1 )
exp hbggﬁ(yzwn)}% 1 (“”n + {log ¢ (yo, 2n)} Kl) :

< max

exp | {108 ¢ (ym, 0)} 2| + 1 )
exp hlogcfﬁ(ym,x;}% ~1 (1 -+ {108 200} ™77

x {KTy(n,o;u) + (K — 1) const} . (32)

USing inequalities ¢ (y07 xn) < (b (yma mn)v ¢ (yma xO) < ¢ (yma xn) we can
obtain
BO (777 g; U) <

exp [{logqb (%o, fvn)}_Kl] +1

exp [{108 6 (g, 7)) ] ~ 1

< max (:cnym + {log ¢ (vo. :rn)}_Kl) ;

exp [{108.6 (ym, 70)} 2] +1

exp [{10g 6 (g, 7)) ] =1
X {KTy(n,o;u) + (K — 1) const} ~

~ 2K lognlog oTy (n, o3 u) {log Ty (1, o5 u) }* (33)

(ymfﬂn + {10g+ ¢ (Ym. xO)}_K2) X

and 7 — 00, 0 — oo through the sequences exp (ym ), exp (x,). Thus

B .
lim 0 (na g; U)

am w < +00.
n— lognlogaTy (n,0;u) {log Ty (1,03 u) }

Since we may replace K by %(K +1) in the above argument and
To (n,05u) — oo with 7, o. Corollary follows.

Definition 2. Let u be a subharmonic function in C\ {0}. A couple of veri-
table orders of u is called a couple of veritable orders of Ty (T,7;u).
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Theorem 5. Ifu(2) is a subharmonic function in C\ {0} then the couples of
veritable orders of the functions Ty (7,7;u) and By (T, r;u) coincide termwise.

Proof. By (Lemma 2, [2]) Ty (7,7;u) has a couple of veritable orders, say
(A1 [u], A2 [u]), and A [u] = AT [u], A2 [u] = A3 [u], where

log To (7,5 u)

Alu] = lim for fixed r,
T—00 log T
log T ;
A5 [u] = lim log T (. i ) for fixed 7.
r—-+o00 logr

Similarly by Lemma 3, [2] By (7,7;u) has a couple of veritable orders,
say (p1 [u], p2 [u]). Making the change of variable p = 1/7, by theorem 4 we
have

log o logn

TO (777 a; u) < BO (777 g; u) <
log (o)

2

1 .
< (rrn o) To (rrs) + Ca(roram) © [t (%) s, (30
s
0

T>n>1,r>0>1.

Set r = yo in (34), v > 1. Next fix 79 and 7y so that 79 > ny7y. Using
(15), (16), provided w (z) is positive on |z| = o for the certain o, we obtain
from (34)

m% (no, o3 u) < Bo (no, 03 u) < Cs (10,70, 0) T (10, Y03 1) +
27
21;(;%5;2;?)70) C3 (10,70, 0)% / ut (e"e) o, (35)
0
where
Cs (10,70,0) = m log (yo) + 2y1—1 log (yo). (36)

From (35) we deduce at once that A\; [u] = p; [u]. Now set 7 = 8n in (34),
B > 1. Fix rg, 0 so that g > Sog. Next as above using (15), (16), provided
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u (z) is positive on |z| = 1/n for the certain 7, we obtain from (34)

log o logn
oo (o) ju) < ‘) < )
oz (ou1) Ty (n,03u) < By (1, 00;u) < Cy (B1,70,n) To (80, ro; u) +
2
log (Bnro) 1/ w0
21og (61) logr004 (Bn,m0,m) . J U (e )d@, (37)
where
Ca (Bn,7o,m) = S8 U0T) 1o (B1) + 2 log (B) (38)
7 og (rofin) 5-1

From (37) we deduce that g [u] = pa [u].

5 Conclusion

In the paper an approach for studying subharmonic functions in the annulus
Agr ={2z: s<|z| <r}, s <1< rissuggested. A counterpart of Jensen’s
theorem for subharmonic functions in such annulus is proved.

Nevanlinna characteristic of functions subharmonic in the annulus A, , is
introduced, which gives possibility to describe a behavior of such functions
at approaching to the inner and outer boundary circles of the annulus A, ;.
Some elementary properties of this characteristic are established. An esti-
mate of a subharmonic function maximum by its Nevanlinna characteristic
is established, which gives possibility to compare a growth order of T (s, 7; u)
and By (s,r;u), and their relative growth. The case K = 1 in the Corollary
1 is open question.

The obtained results will be used for the further study of subharmonic
functions in the annulus Ag,. It is planned the further consideration of
properties of the introduced Nevanlinna characteristic and dissemination of

proposed in the paper methods and tools for study of §-subharmonic functi-
ons in the annulus A, ;.
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B poGori [1| BuBwammch cybrapmoniiini dyHKIil B Kinbimi Ay, e
A = {z: 1/r<|z| <r}, » > 1. B miit crarrti IpOmOHyeTHCH JBOIAPA-
MeTPUYIHUN MAXiT JJIs JTOCTiKeHHsT cyOrapMOHiMHUX (YHKIIH B KiJbIii
Agr = {z: s<|z|<r}, s <1 < r. Posruan dynkiiit cybrapmoniitanx
B KibIli A, Jla€ MOXKJIHMBICTD ONMCYBaTH X HOBEIIHKY IIPH HAOJIMKEHHI 110
BHYTPINTHBOTO 1 30BHIMMHBOIO I'PAHUIHUX KiJI TAKOTO Kijabllsd. BBOAUTHCS Xa-
pakTepuctuka HeBausinuau iy cyObrapMoHifiHUX (DYHKIIIH B TAKOMY KiJIBIT.
JoBomuThest anasor Teopemn Mencena st cyGrapMmosiitnux GbyHKIHH B Ta-
KOMY KiJibIll. BCTaHOBIIIOETHCS OIIHKA MAKCUMyMy CyOTapMOHINHOT (DyHKITT
Jepe3 HEBAHJIIHHIBCbKY XapaKTEPUCTHUKY.



