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Iterated function systems are defined for inclusion hyperspaces and
capacities, and counterparts of classical theorems on attractors, namely
the fixed point theorem, the continuity with respect to a contraction,
the collage and anti-collage theorems, are proved. Self-similar random
capacities are also defined, ad their properties, analogous to properties
of random self-similar measures, are investigated.

Introduction

Capacities were introduced by Choquet [1] as a natural generalization of
measures. They found numerous applications, e.g. in decision making theory
in conditions of uncertainty [2, 3, 4, 5, 6]. Upper semicontinuous capaci-
ties were defined and studied in [7]. Algebraic and topological properti-
es of capacities on compact Hausdorff spaced were investigated in [8]. In
particular, the capacity functor in the category of compacta was defined. A
remarkable fact is that this functor is a functorial part of a monad that is also
described in [8]. The aim of this paper is to transfer to capacities remarkable
results on fractal measures, in particular, random fractal measures.
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1 Basic definitions, notations and facts

A compactum is a compact Hausdorff topological space. We regard the
unit segment I = [0; 1] as a subspace of the real line with the natural
topology. We write A ⊂

cl
B or A ⊂

op
B if A is a closed or resp. an open

subset of a space B. For a set X the identity mapping X → X is denoted
by 1X .

For a set Y and a metric space (X, d) with sup d < ∞ the uniform
convergence metric on the set of all mappings Y → X is defined by the
formula

du(f, g) = sup{d(f(x), g(x)) | x ∈ X}, f, g : Y → X.

For a topological space X its hyperspace expX is the set of all closed
nonempty subsets of X with the Vietoris topology, see, e.g., [9]. The standard
base of the latter consists of all sets of the form

〈U1, . . . , Un〉 = {F ∈ expX | F ⊆ U1 ∪ · · · ∪ Un, F ∩ Ui 6= ∅ ∀ i = 1, . . . , n},
where U1, . . . , Un are open sets in X. If (X, d) is a metric compactum, the
Vietoris topology on expX is determined by the Hausdorff metric dH that
is defined as

dH(F,G) = inf{ε > 0 | d(a, B) 6 ε, d(b, A) 6 ε for all a ∈ A, b ∈ B},
F, G ∈ expX,

where d(x, Y ) = inf{d(x, y) | y ∈ Y } for any x ∈ X, Y ∈ expX. It is
known that for a compactum X the hyperspace expX is a compactum as
well, therefore we can consider compacta exp2 X = exp(expX), exp3 X =
exp(exp2 X), etc. For a metric compactum (X, d) the Vietoris topology on
exp2 X is determined by the metric dHH = (dH)H , and so forth.

For δ > 0 and a set A in a metric space (X, d) let Ōδ(A) = {x ∈ X |
d(x,A) 6 δ}. In particular, Ōδ({a}) = B̄δ(a) for δ > 0 is the closed ball with
the center a and the radius δ. Then we can equivalently define the Hausdorff
metric by the formula

dH(F,G) = min{δ > 0 | F ⊂ Ōδ(G), G ⊂ Ōδ(F )}.
The diameter of a set A in a metric space (X, d) is defined to be diamA =
sup{d(x, y) | x, y ∈ A}.

An inclusion hyperspace H on a compactum X is a closed subset of expX
such that A ∈ H, A ⊂ B imply B ∈ H for all A,B ∈ expX (see [9]). The
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set GX of all inclusion hyperspaces on X is closed in exp2 X, therefore GX
is a compactum. If (X, d) is a metric compactum, then the topology of GX
is determined by the metric dHH .

We follow a terminology of [8] and call a function c : expX ∪ {∅} → I
a capacity on a compactum X if the three following properties hold for all
closed subsets F , G in X :

(1) c(∅) = 0, c(X) = 1;

(2) if F ⊆ G, then c(F ) 6 c(G) (monotonicity);

(3) if c(F ) < a, then there exists an open set U ⊇ F such that for any
G ⊆ U we have c(G) < a (upper semicontinuity).

We extend a capacity c to all open subsets in X by the formula :

c(U) = sup{c(F ) | F ⊂
cl

X,F ⊆ U}.

It is proved in [8] that the set MX of all capacities on a compactum X
is a compactum as well, if a topology on MX is determined by a subbase
that consists of all sets of the form

O−(F, a) = {c ∈ MX | c(F ) < a},

where F ⊂
cl

X, a ∈ R, and

O+(U, a) = {c ∈ MX | c(U) > a} =
{c ∈ MX | there exists a compactum F ⊆ U, c(F ) > a},

where U ⊂
op

X, a ∈ R.
If the topology on a compactum X is determined by a compatible metric

d, then [8] the topology on MX is determined by the following metric :

d̂(c, c′) = inf{ε > 0 | ∀F ⊂
cl

X c(Ōε(F )) + ε > c′(F ), c′(Ōε(F )) + ε > c(F )}.

We write c1 6 c2 for c1, c2 ∈ MX iff c1(F ) 6 c2(F ) for all F ⊂
cl

X. Then

MX is a Lawson lattice [10], and for any set {ci ∈ MX|i ∈ I} and F ⊂
cl

X

we have
∨

i∈I ci(F ) = sup{ci(F ) | i ∈ I}, ∧
i∈I ci(F ) = inf{ci(F ) | i ∈ I}.

The assignments exp, G and M extend respectively to the hyperspace
functor, inclusion hyperspace functor and capacity functor with the same
denotations in the category of compacta, if the maps exp f : expX → expY ,
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Gf : GX → GY and Mf : MX → MY for a continuous map of compacta
f : X → Y are defined by the formulae

exp f(F ) = {f(x) | x ∈ F}, F ∈ expX,

Gf(H) = {B ⊂
cl

Y | B ⊃ f(A) for some A ∈ H}, H ∈ GX,

Mf(c)(F ) = c(f−1(F )), c ∈ MX,F ⊂
cl

Y.

We will also use the mapping µX : M2X → MX defined in [8] by the
formula

µX(C)(F ) = sup{ α ∈ I | C({c ∈ MX | c(F ) > α}) > α},

where C ∈ M2X, F ⊂
cl

X. It is the component of the multiplication of the

capacity monad, see [8] for algebraic meaning of this mapping and [10] for a
“practical interpretation”. We will use only the fact that µX is continuous.
In the sequel we denote the set {c ∈ MX | c(F ) > α} by Fα. Sometimes it
is more convenient to use an equivalent definition of µX : µX(C)(F ) > α for
C ∈ M2X, F ⊂

cl
X, α ∈ I iff there is a set F ⊂

cl
MX such that C(F) > α,

and c(F ) > α for all c ∈ F .
For c ∈ MX and α ∈ I the α-section of c is the set Sαc = {F ∈ expX |

c(F ) > α}. It is proved in [8] that Sαc ∈ GX, and the collection of all Sαc,
α ∈ I, uniquely determines a capacity c. The subgraph of a capacity c ∈ MX
is a set sub c = {(F, α) ∈ expX × I | c(F ) > α}. It is proved in [10] that
sub c is closed in expX × I, and the mapping sub : MX → exp(expX × I)
is an embedding. Obviously sub c ∩ (exp X × {α}) = Sαc× {α}.

We will use a

Lemma 1. Let X be a compact metric space and a metric d̄ on expX × I
is defined by the formula d̄((F1, α1), (F2, α2)) = max{dH(F1, F2), |α1−α2|},
where F1, F2 ∈ expX, α1, α2 ∈ I. Then for all c1, c2 ∈ MX the equality
d̂(c1, c2) = d̄H(sub c1, sub c2) holds.

Proof is straightforward.
We call a capacity c ∈ MX a ∪-capacity (also called sup-measure or

possibility measure, [11]), if c(A ∪ B) = max{c(A), c(B)} for all A,B ⊂
cl

X.

Each ∪-capacity c is completely determined by its values on singletons :
c(A) = max{c({x}) | x ∈ A} for a set A ⊂ X, therefore we identify c with
the upper semicontinuous function X → I that sends each x to c({x}). We
preserve the same denotation c for this function. The set M∪X is closed
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in MX, and for a continuous mapping f : X → Y of compacta we have
Mf(M∪X) ⊂ M∪Y , so we can define M∪f : M∪X → M∪Y as a restriction
of Mf . Thus a subfunctor M∪ of the functor M in the category of compacta
is determined [9, 11]. Moreover, µX(M2

∪X) ⊂ M∪X, and we define µ∪X :
M2

∪X → M∪X as a restriction of µX. If ∪-capacities on a compactum Y are
regarded as functions Y → I, then µ∪X is determined by the formula :

µ∪X(C)(x) = sup{α ∈ I | ∃ c ∈ M∪X such that C(c) > α, c(x) > α},
where C ∈ M2

∪X, x ∈ X.

2 Main results

In the sequel let X be a compact metric space. For a mapping f : X → X
the contraction factor is defined to be equal to

Lip f = sup{d(f(x), d(y))
d(x, y)

| x, y ∈ X,x 6= y}.

A mapping f such that Lip f < 1 is called a contraction, and f is non-
expanding if Lip f 6 1. For 0 < q < 1 we denote Rq(X) = {r : X → X |
Lip r 6 q}. It is easy to see that Rq(X) is a compactum with the uniform
convergence metric.

Recall how a classical iterated function system (IFS) for sets is defined.
Usually only finite sets of contractions are involved because of their practical
use, but there is no formal need for such a restriction. Thus in the sequel
IFS r̄ is a closed nonempty set of contractions with contraction factors not
greater than some q < 1, i.e. r̄ ∈ expRq(X). Then for any F ∈ expX we
put exp r̄(F ) =

⋃
r∈r̄ exp r(F ). It is well-known that the mapping exp r̄ is a

contraction in the space expX with the Hausdorff metric, and Lip exp r̄ 6 q.
Thus it is possible to apply to exp r̄ four classical theorems on contractions :

Theorem (Banach fixed point theorem for contraction maps, [12]). Let
(Y, d) be a complete metric space and f : Y → Y be a mapping such that
Lip f 6 q < 1. Then there is a unique y0 ∈ Y such that f(y0) = y0. Moreover,
for any y ∈ Y and n ∈ N, d(fn(y), y0) 6 qn diam Y

1−q , thus fn(y) → y0 as
n →∞.

Theorem (Continuity of fixed points with respect to contraction maps,
[13]). Let (Y, d) be a compact metric space and contractions f, g : Y → Y
have fixed points y0f and y0g respectively. Then

d(y0f , y0g) 6 du(f, g)
1−min{Lip f, Lip g} .
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Theorem (“Collage theorem”, [14]). Let (Y, d) be a complete metric space
and f be a contraction with a fixed point y0. Then for any y ∈ Y ,

d(y, y0) 6 1
1− Lip f

d(y, f(y)).

Theorem (“Anti-Collage theorem”, [15]). Assume the conditions of the
previous theorem. Then for any y ∈ Y ,

d(y, y0) > 1
1 + Lip f

d(y, f(y)).

Since expX is complete, there is a unique fixed point F for exp r̄, i.e. a set
F such that exp r̄(F ) = F . This fixed point is called the attractor of the IFS
r̄ or a fractal set self-similar w.r.t. exp r̄. For any H ∈ expX the sequence
(exp r̄)n(F ), n = 1, 2, . . . , converges to the fixed point exponentially fast.

Now we extend this notion to inclusion hyperspaces. For any r̄ ∈
expRq(X) and F ∈ GX we put Gr̄(c) =

⋂
r∈r̄ Gr(F). Then Gr̄(F) is

in GX and depends continuously on (r̄, c) ∈ expRq(X) × GX. Now for
R ∈ MRq(X) we define GR(F) by the formula GR(F) =

⋃
r̄∈RGr̄(F). It is

easy to observe that for H ∈ expX we have H ∈ GR(F) if and only if there
is r̄ ⊂

cl
Rq(X), r̄ ∈ R such that for each r ∈ r̄ the set H contains the image

r(F ) of some F ∈ F . It is straightforward to check that GR(F) ∈ GX and it
depends continuously on (F ,R) ∈ GX ×MRq(X). It differs from the usual
IFS for compact sets in that each contraction has a “choice” on which set
to act in a given inclusion hyperspace. Following the commonly used termi-
nology style (see, e.g. [16]) we call R an IFS for inclusion hyperspaces and
GR an IFS operator or fractal transform associated with R. The functors
exp and G preserve contraction factors of mappings, thus

Theorem 1. If R ∈ GRq(X), then GR ∈ Rq(GX).

(An obvious proof is omitted.) Therefore the four previous theorems
about contractions are applicable to GR too. Thus a fixed point F for GR
exists, is unique and depends continuously on R. It is natural to call it the
attractor of the IFS R or a fractal inclusion hyperspace self-similar w.r.t.
GR.

We will use the two (of many existing) natural embeddings iGX, iGX :
expX ↪→ GX for a compactum X, namely iGX(F ) = {H ∈ expX | H ⊃
F}, iGX(F ) = {H ∈ expX | H ∩ F 6= ∅} for F ∈ expX. For a fixed
r̄ ∈ expRq(X) let R∗ = iGRq(X)(r̄), R∗ = iGRq(X)(r̄). Then it is easy
to verify that for any F ∈ expX we have GR∗(iGX(F )) = iGX(Gr̄(F )),
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GR∗(iGX(F )) = iGX(Gr̄(F )). Thus a fractal transform for sets embeds
into a fractal transform for inclusion hyperspaces.

As inclusion hyperspaces are tightly connected with capacities ([8]), it is
natural to go forth and define IFS for capacities. As MX is a Lawson lattice
w.r.t. “setwise” infs and sups, we can put Mr̄(c) =

∧
r∈r̄ Mr(c) for all r̄ ∈

expRq(X) and c ∈ MX. Then Mr̄(c) is in MX and depends continuously
on (r̄, c) ∈ expRq(X) ×MX. Now for R ∈ MRq(X) we define MR(c) by
the formula

MR(c)(F ) =
∨

r̄∈exp Rq(X)

min{Mr̄(c)(F ),R(r̄)} for F ⊂
cl

X.

Theorem 2 (Fixed point theorem for capacities). Let X be a metric
compactum, c ∈ MX and R ∈ MRq(X). Then MR(c) is a capacity
on X, and the mapping MR is non-expanding but is not a contraction.
Nevertheless, there is a unique c0 ∈ MX such that MR(c0) = c0, and for
any c ∈ MX we have d̂((MR)n(c), c0) 6 qn diamX, thus (MR)n(c) → c0

as n →∞.

Proof. It is obvious that MR(c)(∅) = 0, MR(c)(X) = 1, and A ⊂ B,
A,B ⊂

cl
X imply MR(c)(A) 6 MR(c)(B). If MR(c)(F ) < α ∈ I, then there

is no such r̄ ∈ expRq(X) that R(r̄) > α and Mr(c)(F ) > α for all r ∈ r̄.
Therefore the capacity R of the closed set {r ∈ Rq(X) | Mr(c) ∈ Fα} is
less than α. It was proved in [17] that Fα depends continuously on (F, α),
thus there is a neighborhood U ⊃ F in X such that for any H ∈ expX,
H ⊂ U we also have R({r ∈ Rq(X) | Mr(c) ∈ Hα}) < α, which implies
MR(c)(H) 6 α. This is sufficient for the upper semicontinuity of MR(c),
and this function is a capacity.

To prove that MR is non-expanding, we first observe that for a non-
expanding r : X → X the mapping Mr : MX → MX is non-
expanding. Next, if (ci)i∈I and (c′i)i∈I are collections of capacities on
X such that d̂(ci, c

′
i) 6 ε for all i ∈ I, then d̂(

∧
i∈I ci,

∧
i∈I c′i) 6

ε, therefore for all r̄ ∈ expRq(X) and c, c′ ∈ MX the inequality
d̂(Mr̄(c),Mr̄(c′)) = d̂(

∧
r∈r̄ Mr(c),

∧
r∈r̄ Mr(c′)) 6 d̂(c, c′) holds, which

implies d̄H(subMr̄(c), subMr̄(c′)) 6 d̂(c, c′) by Lemma 1. If a mapping
ϕβ : I → I for β ∈ I is defined as ϕβ(t) = min{t, β}, then the mapping
1exp X ×ϕβ : expX × I → expX × I is also non-expanding w.r.t. the metric
d̄ defined in Lemma 1. As the operation of union in a metric compactum
Y is also non-expanding as mapping exp2 Y → expY , we obtain that the
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mapping that sends c ∈ MX to

subMR(c) =
⋃

r̄∈exp Rq(X)

exp(1exp X × ϕR(r̄))(subMr̄(c))

is non-expanding. By Lemma 1 this means that MR is non-expanding.
Due to size restrictions we omit a simple example of c1, c2 ∈ MX such

that
d̂(MR(c1),MR(c1)) = d̂(c1, c2) 6= 0.

Let us study the section SαMR(c) = {F ∈ expX | MR(c) > α} ∈ GX.
Then F ∈ SαMR(c) iff there is r̄ ∈ SαR such that F ∈ ⋂

r∈r̄ SαMr(c) =⋂
r∈r̄ Gr(Sαc). Thus SαMR(c) =

⋃
r̄∈Sα

⋂
r∈r̄ Gr(Sαc) = G(SαR)(Sαc), and

IFS R for capacities acts on each section Sαc as the IFS SαR for inclusion
hyperspaces. As for inclusion hyperspaces fixed points for IFSs are unique,
a fixed point cR for MR is unique as well.

Observe that if a metric compactum (Y, d) is a union of its closed
subsets Yi, and closed subsets A,B ⊂ Y intersect all Yi, then dH(A,B) 6
supi{dH(A ∩ Yi, B ∩ Yi)}. Thus for c1, c2 ∈ MX we obtain

d̂(c1, c2) = d̄H(sub c1, sub c2) 6
6 sup

α∈I
d̄H(sub c1 ∩ (expX × {α}), sub c2 ∩ (exp X × {α})) =

= sup
α∈I

dHH(Sαc1, Sαc2).

The right side of the latter inequality is also a metric on the space
MX ([18]). Let us denote it d∞(c1, c2). By Theorem 1 the mappi-
ng MR is a contraction with a factor 6 q w.r.t. the metric d∞. As
sup d∞ = diamX, by the above we obtain that d̂((MR)n−1(c), (MR)n(c)) 6
d∞((MR)n−1(c), (MR)n(c) 6 qn−1 diamX for all c ∈ MX, n ∈ N. Thus
the sequence (MR)n(c) converges to some c0 ∈ MX, and by continuity of
MR the capacity c0 is a fixed point. Similarly (MR)n is a contraction wi-
th a factor 6 qn w.r.t. the metric d∞, thus for any c, c′ ∈ MX we have
d̂((MR)n(c), (MR)n(c′)) 6 qn diamX, thus

d̂((MR)n(c), c0) = d̂((MR)n(c), (MR)n(c0)) 6 qn diamX.

2

We call MR a scaling law for capacities (following [19]) of fractal
transform for capacities (like [20]), and R is an IFS for capacities. If
c = MK(c), then c is an attractor of R or a capacity that is self-similar
w.r.t. MR.
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Lemma 2. For a fixed c ∈ MX the mapping (MRq(X), d̂u) → (MX, d̂),
that sends R to MR(c), is non-expanding.

Proof. If r, r′ ∈ Rq(X) are such that du(r, r′) 6 δ, then obviously
d̂(Mr(c),Mr′(c)) 6 δ. If A,B ∈ expMX are such that d̂H(A,B) 6 δ,
then d̂(∨A,∨B) 6 δ, d̂(∧A,∧B) 6 δ. Combining these two facts together,
we obtain that if r̄, r̄′ ∈ expRq(X), (du)H(r̄, r̄′) 6 δ, c ∈ MX, then

d̂(Mr̄(c),Mr̄′(c)) = d̂(
∧
r∈r̄

Mr(c),
∧

r∈r̄′
Mr(c)) 6 δ.

Now let d̂u(R,R′) = δ for R,R′ ∈ MRq(X). For a set F ∈ expX and
c ∈ MX we denote MR(c)(F ) = α. Then there exists r̄ ∈ expRq(X) such
that R(r̄) > α, Mr̄(c)(F ) > α. Put r̄′ = Ōδ(r̄), then R′(r̄′) > α − δ,
(du)H(r̄, r̄′) 6 δ, therefore d̂(Mr̄(c),Mr̄′(c)) 6 δ. Thus Mr̄′(c)(Ōδ(F )) >
Mr̄(c)(F ) − δ > α − δ, and MR′(c)(Ōδ(F )) > α − δ = MR(c)(F ) − δ,
i.e. MR(c)(F ) 6 MR′(c)(Ōδ(F )) + δ. Similarly we prove MR′(c)(F ) 6
MR(c)(Ōδ(F )) + δ for all F ∈ expX. This implies d̂(MR(c),MR′(c)) 6
δ = d̂u(R,R′). 2

Theorem 3 (Continuity of fixed points with respect to IFS). Let (X, d) be a
metric compactum, and let c0, c′0 be attractors for R,R′ ∈ MRq(X) respecti-
vely. Then d̂(c0, c

′
0) 6

∑∞
n=1 min{d̂u(R,R′), 2qn−1 diamX}, therefore

d̂(c0, c
′
0) → 0 as d̂u(R,R′) → 0.

Proof. We denote d̂u(R,R′) = δ. By the above for a capacity c ∈
MX we have d̂(MR(c),MR′(c)) 6 δ, d((MR)2(c), (MR′)2(c)) 6 2δ, . . . ,
d((MR)n(c), (MR′)n(c)) 6 nδ, . . . . Let n0 be a least index n such that
δ > 2qn−1. Then

d̂(c0, c
′
0) 6

6 d̂(c0, (MR)n0−1(c)) + d((MR)n0−1(c), (MR′)n0−1(c))+

+d((MR′)n0−1(c), c′0) 6
∞∑

n=n0

d̂((MR)n−1(c), (MR)n(c))+

+(n0 − 1)q +
∞∑

n=n0

d̂((MR′)n−1(c), (MR′)n(c)) 6

6
∞∑

n=n0

qn−1 diamX + (n0 − 1)q +
∞∑

n=n0

qn−1 diamX =
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=
∞∑

n=1

min{δ, 2qn−1 diamX}.

2

In a quite similar manner we obtain a

Theorem 4 ("Collage+Anti-Collage theorem"for capacities). Let X be a
metric compactum, c ∈ MX and R ∈ MRq(X). If c0 is a fixed point of
MR, then

1
2
d̂(c,MR(c)) 6 d̂(c, c0) 6

∞∑

n=1

min{d̂(c,MR(c)), qn−1 diamX}.

This theorem provides a ground for solutions of the inverse problem for
capacities : given c ∈ MX and a class M ⊂ MRq(X) of IFSs, find R ∈ M
such that the attractor c0 of R is close enough to c (see [16]).

Now we show that the proposed transform includes a simple variant of
the method of Iterated Fuzzy Sets Systems (IFZS, see [21]). Each ∪-capacity
c ∈ M∪X can be treated as an upper-continuous function X → I, that is a
fuzzy subset of X with compact level sets. If c is considered as an image in
X, then for any point x the value c(x) is a grey level (0 = black, 1 = white).

Assume that R ∈ M∪Rq(X) and look how MR acts on c ∈ M∪X. It is
straightforward to verify that MR(c) ∈ M∪X, and

MR(x) = sup{α ∈ I | there are r ∈ Rq(X), y ∈ X such that R(r) > α,

c(y) > α, r(y) = x} = sup{ϕR(r)(c(y)) | r ∈ Rq(X), y ∈ r−1(x)},

where again ϕβ(t) = min{β, t} for t ∈ I. It means that we make transformed
copies of the image c, but restrict brightness of the copy of c under r from
the above by R(r). If R(r) 6= 0 only for a finite number of r ∈ Rq(X), then
we obtain IFZS, and ϕR(r), r ∈ Rq(X), are simple grey level maps [16].

All the described above fractal transforms were deterministic, i.e. they
transform each inclusion hyperspace or capacity into a uniquely determined
object. Now we will study how is it possible to obtain random fractal capaci-
ties. It is natural to exploit the fact that capacities are a natural framework
to reflect uncertainty. If X is considered as a space of elementary events
(sample space) for some experiment, and c is a capacity on X, then c(A) for
a subset A ⊂ X is a level of certainty that some event x ∈ A will appear in
the experiment. The more is the value c(A) ∈ [0; 1], the more probable we
consider the event A. We can say that c describes a capacity distribution of
a random point x ∈ X.
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Now we describe a transform that is a counterpart of the scaling law
for random measures defined by Hutchinson, Rüschendorf in [19] and of
superfractals introduced by Barnsley, Hutchinson and Stenflo [22, 23].

For a fixed C ∈ M2X we define a mapping ψC : MRq(X) → M2X
by the formula ψC(R) = M(MR)(C). By Lemma 2 the mapping ψC is
nonexpanding, and by Theorem 2 the mapping that sends each C ∈ M2X

to ψC , is nonexpanding as well w.r.t. the pair of the metric ˆ̂
d and the uni-

form convergence metric. Now we fix a “big coefficient” K ∈ M2Rq(X).
It describes a capacity distribution of a “small coefficient” R ∈ MRq(X).
The functor M preserves the class of nonexpanding mappings, therefore the
mapping MψC : M2Rq(X) → M3X is nonexpanding, as well as the mapping
C 7→ MψC . We put ΨK(C) = µMX ◦MψC(K). Taking into account that µY
is nonexpanding for any metric compactum Y , we conclude that the mapping
ΨK : M2X → M2X is nonexpanding. It is not a contraction, therefore usual
contraction arguments are not directly applicable here to prove the existence
and the uniqueness of a fixed point for ΨK. We are to examine properties of
ΨK deeper.

Lemma 3. Let K ∈ M2Rq(X) and C, C′ ∈ M2X. Then
ˆ̂
d((ΨK)n(C), (ΨK)n(C′)) 6 qn diamX.

Proof. We denote C = MψC(K). Then ΨK(C)(F) > α for F ⊂
cl

MX,

α ∈ I if and only if there exists H ⊂
cl

M2X such that C(H) > α, and for

all C ′ ∈ H we have C ′(F) > α. This is equivalent to the existence of H ⊂
cl

MRq(X) such that K(H) > α, and for allR ∈ H we have ψC(R)(F) > α, i.e.
M(MR)(C)(F) > α. Thus for F ⊂

cl
MX we have F ∈ SαΨK(C) iff there is

H ∈ SαK such that for any R ∈ H there is F ∈ SαC such that MR(F ) ⊂ F .
Therefore F ∈ SαΨKΨK(C) iff there is H ∈ SαK such that for all R ∈ H
there is HR ∈ SαK such that for all R′ ∈ HR there is F ∈ SαC such that
MR ◦MR′(F ) ⊂ F .

To proceed, for an inclusion hyperspace G ∈ GY and n ∈ N we define an
n-level G-tree in the following manner : H ⊂ G× Y ×G× · · · × Y ×G× Y
(2n factors) is an n-level G-tree iff the following holds :

1) If (A1, x1, A2, x2, . . . , xn−1, An, xn) ∈ H, then x1 ∈ A1, x2 ∈ A2, . . . ,
xn−1 ∈ An−1, xn ∈ An;

2) For any x1 ∈ A1 ∈ G, x2 ∈ A2 ∈ G, . . . , xk ∈ Ak ∈
G, k ∈ {0, 1, . . . , n − 1} there is a unique Ak+1 ∈ G there is
(A1, x1, A2, x2, . . . , Ak+1, . . . , xn−1, An, xn) ∈ H.
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The latter property means that Ak+1 is completely determined by
x1, . . . , xk, therefore for a tree H in the sequel we denote Ak+1 = Hx1x2...xk

(thus A1 = H is unique for a fixed tree H).
Now it is straightforward to verify that for F ⊂

cl
MX we have F ∈

Sα(ΨK)n(C) iff there is an n -level SαK-tree H such that for all

(H,R1,HR1 ,R2,HR1R2 , . . . ,Rn−1,HR1R2...Rn−1 ,Hn,Rn) ∈ H
there is F ∈ SαC such that MR1 ◦MR2 ◦ · · · ◦MRn(F ) ⊂ F .

The mapping MR1 ◦MR2 ◦ · · · ◦MRn : MX → MX is a contraction
with factor 6 qn w.r.t. the metric d∞ (see proof of Theorem 2). As d̂ 6
d∞, we obtain diam(MR1 ◦ MR2 ◦ · · · ◦ MRn(MX)) 6 qn diamX. Thus
d̂H(MR1◦MR2◦· · ·◦MRn(F ),MR1◦MR2◦· · ·◦MRn(F ′)) for all F, F ′ ⊂

cl
MX. This implies than for any n-level SαK-tree H and any collections of
FR1R2...Rn−1Rn , F ′

R1R2...Rn−1Rn
⊂ MX for all

(H,R1, HR1 ,R2,HR1R2 , . . . ,Rn−1,HR1R2...Rn−1 ,Rn) ∈ H
we have

d̂H(Cl(
⋃

(H,R1,...,Rn)∈H
MR1 ◦MR2 ◦ · · · ◦MRn(FR1...Rn)),

Cl(
⋃

(H,R1,...,Rn)∈H
MR1 ◦MR2 ◦ · · · ◦MRn(F ′

R1...Rn
))) 6 qn diamX.

Therefore for all α ∈ I the distance d̂HH between the inclusion
hyperspaces

Sα(ΨK)n(C) = {F ⊂
cl

MX | F ⊃

⊃ Cl(
⋃

(H,R1,...,Rn)∈H
MR1 ◦MR2 ◦ · · · ◦MRn(FR1...Rn))

for an n-level SαK-tree H and FR1...Rn ∈ SαC}
and

Sα(ΨK)n(C′) = {F ⊂
cl

MX | F ⊃

⊃ Cl(
⋃

(H,R1,...,Rn)∈H
MR1 ◦MR2 ◦ · · · ◦MRn(FR1...Rn))

for an n-level SαK-tree H and FR1...Rn ∈ SαC′}
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is not greater than qn diamX. This implies that ˆ̂
d((ΨK)n(C), (ΨK)n(C′)) 6

qn diamX. 2

Summing up, we obtain that the following theorem is true :

Theorem 5 (Fixed point theorem for distributions of capacities). Let (X, d)
be a metric compactum and K ∈ M2Rq(X). Then ΨK is non-expanding, but
is not a contraction. Nevertheless, there is a unique C0 such that ΨK(C0) =

C0, and for any C ∈ M2X we have ˆ̂
d((ΨK)n(C), C0) 6 qn diamX.

Thus we call K an IFS for distributions of capacities and C0 is an attractor
of K or a distribution of capacities that is self-similar w.r.t. ΨK.

Also mutatis mutandis :

Theorem 6 (Continuity of fixed points with respect to IFS for distri-
butions of capacities). Let (X, d) be a metric compactum, and let C0,
C′0 be attractors for K,K′ ∈ M2Rq(X) respectively. Then ˆ̂

d(C0, C′0) 6
∑∞

n=1 min{ ˆ̂
du(K,K′), 2qn−1 diamX}, therefore ˆ̂

d(C0, C′0) → 0 as ˆ̂
du(K,K′) →

0.

Theorem 7 ("Collage+Anti-Collage theorem"for distributions of capaciti-
es). Let (X, d) be a metric compactum, C ∈ M2X and K ∈ M2Rq(X). If C0

is a fixed point of ΨK, then

1
2

ˆ̂
d(C, ΨK(C)) 6 ˆ̂

d(C, C0) 6
∞∑

n=1

min{ ˆ̂
d(C, ΨK(C)), qn−1 diamX}.

3 Final remarks

It is not difficult to describe a special case of IFS for distributions of
capacities when the “big coefficient” is a ∪-capacity (= fuzzy set) of ∪-
capacities (fuzzy sets). This case has a natural interpretation in terms of
random grayscale images.

It is also straightforward to extend the presented results to fractal capaci-
ties with values in compact Lawson lattices (see [10]). For example, a color
image in RGB mode can be regarded as an ∪-capacity with values in the
lattice [0; 1]3, so we expect that these results will be of practical importance.
It is the topic of the next publication.
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ФРАКТАЛЬНI ЄМНОСТI
ТА IТЕРОВАНI СИСТЕМИ ФУНКЦIЙ

Олег НИКИФОРЧИН

Прикарпатський нацiональний унiверситет
iменi Василя Стефаника

Означено iтерованi системи функцiй для гiперпросторiв включення
i ємностей, i доведено аналоги класичних теорем про атрактори, а саме
теорему про нерухому точку, неперервнiсть атрактора стосовно стиска-
ючого вiдображення, а також Collage+Anti-Collage Theorem. Означено
самоподiбнi випадковi ємностi i вивчено їх властивостi, аналогiчнi до
властивостей випадкових самоподiбних мiр.




