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ON TIME IRREVERSIBILITY OF GENERALIZED HASSANI KINEMATICS

The original Hassani transforms were introduced in the works of Algerian
physicist M. E. Hassani. Hassani's generalized (superluminal) kinematics appeared
in the cohntext of generalization and development of Hassani's ideas. In the
present paper, applying Theorem of non returning for universal kinematics, it is
proven that Hassani's generalized kinematics with positive direction of time are
certainly time irreversible. From the physical point of view the last result means
that in any time-positive Hassani kinematics temporal paradoxes are impossible
basically, that is there is no potential possibility to affect the own past by means of
“traveling” and “jumping” between reference frames.

Key words: universal kinematics, changeable sets, inertial reference frames, tachyons,
temporal paradoxes, time irreversibility.

Introduction. Subject of constructing the theory of super-light
movement, had been initiated in the papers [1, 2] more than 55 years ago.
Despite the fact that at present tachyons (i.e. objects moving at a velocity
greater than the wvelocity of light) are not experimentally detected, this
subject remains being actual. Initially, the theory of tachyons was considered
in the framework of classical Lorentz transformations, and superlight speed
for frames of reference was forbidden. But afterwards in the papers [22, 4,
21] and later in the papers of S. Medvedev [18] as well as J. Hill and B. Cox
[17] the generalized Lorentz transforms for superluminal reference frames
were deduced in the case of three-dimension space of geometric (non-time)
variables. And in [14] the above generalized Lorentz transforms were
extended to the more general case of arbitrary (in particular infinity)
dimension of the space of geometric variables (namely to the case of real
Hilbert space). M. E. Hassani in [16] proposed the another interesting, system
of coordinate transforms for superluminal reference frames in the case of
three-dimension space of geometric variables. In the paper [11] the above
original Hassani transforms were generalized and extended to the case of
arbitrary real Hilbert space. Also in [11] universal kinematics based on these
generalized Hassani transformations were constructed, and it was shown that
these generalized Hassani kinematics do not satisfy the principle of relativity
in the general case. The main aim of this paper is to show that the genera-
lized Hassani kinematics with positive direction of time, are time irreversible.
This means that in these kinematics temporal paradoxes are impossible
basically, that is there is not potential possibility to affect the own past by
means of “traveling” and “jumping” between reference frames and therefore
the principle of causality is not violated, despite the fact that these kinematics
allow superluminal motion for material points and reference frames.

In Section 2 we recall definition of the generalized Hassani transforms over
Hilbert space, introduced in [11]. In Section 3 we recall main definitions and
some results of the theory of changeable sets and abstract kinematics, needed
further, also we define generalized Hassani kinematics based on generalized
Hassani transforms. In Section 4 we remind definition of time irreversibility and
Theorem of non returning for universal kinematics. In Section 5 we obtain some
criteria of positive or negative time direction between reference frames with
affine mutual coordinate transform operator. Finally in Section 6, applying
results of previous sections, we prove that generalized Hassani kinematics with
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positive direction of time are time irreversible, which is the main result of the
paper.
1. Generalized Hassani transforms over Hilbert space. Let (9,|,(,-)) be

a Hilbert space over the real field R such, that dim($)>1, where dim($) is
dimension of the space $. Emphasize, that the condition dim($)>1 should be

interpreted in a way that the space $§ may be infinite-dimensional. Let £($)
be the space of (homogeneous) linear continuous operators over the space §.

Denote by L£($) the space of all operators of affine transformations over the
space $), that is £(9)= {A[a] | AeL(9), a eﬁ} , Where A[a]ac =Ax+a, xe9.
The Minkowski space over the Hilbert space § is defined as the Hilbert
space M(H)=RxH={(t,x) | teR,xeH}, equipped by the inner product and

1/2
M(5) :(t12 +||x1||2>
(where w; =(t;,x;)e M($), ie{l,2}) ([14, 7]). In the space M($) we select

the next subspaces: 9, :={(t,0) | teR}, %, ={(0,x) | xe$H} with 0 being zero
vector. Then, M(H)=9H,®$,, where @ means the orthogonal sum of

norm: (W, w,) = <W1’W2>M(5§) =tity H(@,2,),  wy]=w,

subspaces. Denote: e, :=(1,0) e M($)). We denote by X and '/I\‘ the orthogonal

projectors on the subspaces $), and ) :

Xw =(0,x) € H;; Tw = (t,0) =T (w)e, € 9,,

where 7T (w)=t (w = (t,x) e M(9)).
Definition 1. The operator SeL(M($)) is referred to as linear coor-
dinate transform operator if and only if there exists the continuous inverse

operator S € L(M($)).
Denote via Pk($)) the set of all operators Se L (M($)), which has the
continuous inverse operator St €L (M($)). Operators SePk($) will be

called as (affine) coordinate transform operators.

Let B, (%) be the unit sphere in the  space £y

B, (9,)={xeH | Ixl=1}). Any vector neB,(%,) generates the following
orthogonal projectors, acting in M($):

X [n]Jw=(nw)n (we M(ﬁ)),}

X! [n]=X-X, [n]. (1)

Recall, that an operator U e L($)) is referred to as unitary on 6, if and only
it AU €L(H) and Vxes |Ux|=|x|. Let £($,) be the set of all unitary
operators over the space §),. Fix some real number c¢ such, that 0<c<oo.
Then for every Ae[0,c), se{-11}, Jei(H,), neB,(H,) and aec M($H) we

introduce the following operators in M($)):
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A
(s7(w)- 2 n.w) )
W, [sn,J]w:= 022 e, +J wn+xf[n]w 5 (2)
A A
-4 -4
W, . [snJ;alw:=W, [snJ](w+a) (weM(9)). (3)

Under the additional conditions dim($)=3, s=1 the right-hand part of the

formula (2) is equivalent to the same part of the formula (28b) from [19, page
43]. That is why, in this case we obtain the classical Lorentz transforms for
inertial reference frame in the most general form (with arbitrary orientation
of axes).
Denote by Y the class of functions 9:[0,0) > R, satisfying the following
conditions:
S(A) 2 for A €[0,%0),
(4)
In>0 9A)>r (Vrel0,n)).

For any function 9 Y we use the following notation:
D.[9]:={re[0,00) | 3(R) > A} (5)
According to the conditions (4), we have, ©.[9]# <, and moreover,
[0,mM)=®D.[9] for some n>0. (6)

For each functional parameter S Y (where Y is the class of functions,
satisfying (4)) we introduce classes of operators:

O(H,[8])={W, g5, [s:n,J]| se{-L1}, xeD.[8], neB,(%,), JeU($H,)}; (7)

O, (H,[9]):={W, 30, [sn,J]e O(H,[8]) | s=1}=
={W, g0y [Lm, J]| 2eD.[9], neB,($),), JeU(H,)}; (8)
P(H,[8]) = {WA,S(L) [s,n,J;a] | W, son [s,n,J]e O($H,[8]), ae M(ﬁ)}§ 9)
B, (9,[8]) = {WA,S(A) [s,n,J;a] | W, son [s,n,J]€ O, (H,[9]), ae M(YJ)}7 (10)
where ©.[9] is the set of 3 -allowed velocities, defined by (5). It is not hard
to verify that for each 9e€Y we have 9O(H,[9]) c LIM($H)NPk(H) and

PB(H,[9]) cPk(H) < L (M($)) (for details see [11]), moreover the following
set-theoretic inclusions are performed:

9, (9,[8) = O(H,[8]) = B (H,[8D; (11)

O, (H,[8D =B, (5,[8D) = B(H[9)). (12)

According to [11], we call the class O($,[9]) by class of generalized

Hassani transforms over Hilbert space §; we call O ($,[9]) by class of

time-positive generalized Hassani transforms over §; we call B($,[9]) by

class of Poincare—Hassani transforms over §; we call B, (9,[9]) by class of
time-positive Poincare—Hassani transforms over §. For 0<c <o we note:

c, 0<A<ec,

r h>ec. (13)

9. (1) =
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It is easy to verify that 9, €Y and D.[9,]=[0,c) (for each ce(0,+x)). For
the function 9,e€Y we get, D(ﬁ,[SC])zD(YJ,C), ‘B(ﬁ,[SC])z‘B(ﬁ,c),
O, (9,[9.])=9, (%,¢), B.(H,[9.])=P,(H,c), where the classes of operators
O(H,¢), O, (H,¢), B(H,c), B, (9,¢) are defined in [11, 7, 6, etc].

Remark 1. It can be proven that for any ce[0,+w) all four classes of
operators O($,c), O, (H,¢), P(H,c), B, (H,c) are groups of operators (in alge-
braic sense) in the space M($) relatively the operation of multiplication

(composition) of operators (see [6, Remark 4.1, Corollary 4.1]; see also [7,
Assertion 2.17.1 and formula (2.94), Assertion 2.17.6, Corollary 2.19.5]). In

particular 9($,c) coincides with the group of all linear coordinate transform
operators over the space M($)), leaving unchanged values of the functional
M, (w) = |[Xw]* - c*72 (w) (weM($)), that is the set of all bijective opera-
tors LeL(M($)) such, that M, (Lw)=M,(w) (VweM($)). In the case

H=R> the group of operators O, ($),c) coincides with with the full Lorentz

group, being considered in [20]. In the case H=R?® the group of operators
B, (H,¢) coincides with the famous Poincare group [7, Remark 2.19.1].
Moreover, in [11] it had been proven that if for some function 3€Y one of
the classes of operators O( $,[9]), O, (£,[9]), B(H,[9]), B, (5H,[9]) is a group
of operators in the space M($)) then a number ce(0,0) exists such, that
9(L)=9.(L) for every Ae(0,0), and in this case we have O(9,[3])=O($,c),

O, (9,[8) =9, (H,¢), BHID=PB(H,¢), B, (H.[9D =B, (H,0)

2. Some facts from the theory of changeable sets and abstract
kinematics. In this section we present some definitions and results from the
theory of changeable sets and abstract kinematics, needed for statement of
the main results. From an intuitive point of view, changeable sets are sets of
objects which, unlike elements of ordinary (static) sets, may be in the process
of continuous transformations, and which may change properties depending
on the point of view on them (that is depending on the reference frame).

Definition of changeable set will be made in two steps. In the first step
we formulate the definition of base changeable set.

Let T=(T,<) be any linearly (totally) ordered set (the sense of [3, p. 12])
and let X be any nonempty set. For any ordered pair o=(t,x)e TxX we use
the notations:

bs(w) =, tm(w) =t.

Definition 2 ([8]!). The ordered triple of kind B=(B,T,<), where

Bc TxX, is called by base changeable set if and only if the following

conditions are satisfied:
1. B2J and < is reflexive binary relation on B (that is VoeB o< o);

2. for arbitrary o,m, €B the conditions ®, < ®, and o, #w®, cause the
inequality tm (o)l) <tm (0)2), where < 1is the strict order relation, generated by

the non-strict order < of linearly ordered set T =(T,<)2.

1 In some papers it can be found definition of base changeable set, that uses the notion of
primitive changeable set, which is different from Definition 2 (see for example [7, 5]). As it was
proven in [7, 6], the both definitions are equivalent.
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Remark 2. For an arbitrary base changeable set B=(B,T,<)=
=(B,(T,<),<) (where Bc<TxX) we use the following mnotations and
terminology:

Bs (B) := B; < =< Tm(B) = T;Tm(B) :=T; <z=<

Bs(B) ={xeX|FoeBs(B)(bs(o)=x)}={bs(w) | oeBs(B)}. (14)

e For t,1eTm(B) we write t <z 7 if and only if {<z t and t=r.

e The set Bs(B) is called by the basic set or the set of all elementary
states of B.

e The set Bs(B) is called by the set of all elementary-time states of B.

e The set Tm(B) is called by the set of time points of B.

e The relation <« is called by the base of elementary processes of B.
B

Note that from the definition (14) together with the above notations for any
base changeable set B we deduce:

Bs(B) < Tm(B)xBs(B) (15)

Remark 3. In the cases, when the base changeable set B is evident we
use the notations < ,<,< instead of the notations <-,<;,<gz.
B

For the elements o;,m,<Bs(B) the noting ,<« ©, should be
interpreted as “the elementary-time state w, is the result of transformations
(or the transformation prolongation) of the elementary-time state w,”.

We say that elementary-time states o,,m, €Bs(B) are united by fate in

B if at least one of the correlations w, <— o, or o, < o, is valid.

The main method of generation base changeable sets is connected with
systems of abstract trajectories.

Definition 3. Let M be an arbitrary set and T =(T,<) be any linearly
ordered set.

1. Any mapping r:®D(r)—> M, where D(r)cT, will be referred to as an
abstract trajectory from T to M (here D(r) is the domain of the abstract
trajectory T ).

2. Any set R, which consists of abstract trajectories from T to M will be
called system of abstract trajectories from T to M.

Theorem 1 ([5], see [7]). Let R be a system of abstract trajectories from
T=(T,<) to M. Then there exists a unique base changeable set B=At(T,R),
such, that:

1) Tm(B)=T;

2) BB(B)ZUTERT;

3) For arbitrary o,,0, €Bs(B) the condition ,<o, is satisfied if and
B

only if tm (col) <tm (0)2) and there exists an abstract trajectory re€R such,

that o,,0, 7.

2 Recall [3] that the (non strict) linear order relation < generates the strict order relation < on
T by the following rule:
t; <t, holds if and only if t; <t, and t; # t,(Vt,,t, € T).
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Remark 4. Note, that in Theorem 1 any trajectory reR can be
interpreted as the set: 7={(t,7(t)) | te®D(r)}. So, in accordance with item 3)
of this theorem, for the base changeable set B=At(T,R) we have,
Bs(B) =UTER9‘{(T)Q M, where R(r) is the range of trajectory reR.

Conversely, it can be proven, that any base changeable set can be
generated by some system of abstract trajectories ([5], see also [7]).

Other further important method of generation new base changeable sets
is creation of image of existing base changeable set.

Theorem 2 (theorem on image, published in [10], see also [7]). Let B be a

base changeable set, T =(T,<) be a linearly ordered set, X be any set and U
be a mapping from Bs(B) into TxX (U:Bs(B)—>TxX ). Then there exists
only one base changeable set B, :=U[B,T], satisfying the following conditions:

1. Tm(B,)=T;

2. Bs(B,)=U(Bs(B))={U(0) | ®eBs(B)};

3. Let 0,0, eIB%ﬁ(Bl) and tm(&)l) * tm((bz). Then &, and &, are united
by fate in B, if and only if, there exist united by fate in B elementary-time
states o,,0, € Bs(B) such, that &, =U(0,), @, =U(w,).

U[B,T] is called by image of base changeable set B relatively the

mapping U and time scale T. In the case where T=Tm(B) we use the
notation U[B] instead of U[B,T]:

U[B]=U[B,Tm(B)].
Definition 4. Let B:(Ba | aeA) be any indexed family of base
changeable sets (where A= 1is the some set of indexes). The system of
mappings ﬂz(uﬁala,BeA) of kind uﬁa:2ms(3‘*)—>2m(3”) (a,peA) is

referred to as unification of perception on B if and only if the following
conditions are satisfied:

1. 4, A=A forany acA and AgIBSﬁ(BQ).

(Here and further we denote by ilﬁaA the action of the mapping ilﬁq to
the set AcBs(B,), that is Up A=y, (4).)

2. Any mapping il[m is a monotonous mapping of sets, i.e. for any
a,BeA and A BCBs(B,) the condition AcB assures U, Ac Uy B.

3. For any o,B,ye.A and AcBs(B,) the following inclusion holds:

gl Al A (16)

In this case the mappings ﬂﬁa (o,pe A) we call by wunification
mappings, and the triple of kind Z =(A,TS’, ﬁ) we name by changeable set.

Remark 5 (on motations). Let Z =(A,E,ﬂ) be a changeable set, where
E:(Bﬂ | aeA) is an indexed family of base changeable sets and

H:(um | oc,BeA) is an unification of perception on B. Further we will use

the following terms and notations:
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1) The set A will be called the index set of the changeable set Z, and it
will be denoted by Znd(Z2).

2) For any index o eZnd(Z) the pair 1k, (Z)=(o,B,) will be referred to

as reference frame of the changeable set Z.
3) The set of all reference frames of Z will be denoted by Lk(Z):

Lk(Z)={(o,B,) | aeInd(2)}={lk,(Z) | o e Ind(Z)}.

Typically, reference frames will be denoted by small Gothic letters ([,m,€p
and so on).
4) For [=(0,B,) e Lk(Z) we introduce the following denotations:

ind(l) == o " =B,.

Thus, for any reference frame [eLk(Z) the object [ is a base
changeable set. Further, when it does not cause confusion, for any reference
frame [e Lk(Z) the symbol “ *” will be omitted in the denotations %5(?),

Bs ([A ) , Tm([A ) , Tm([A) , “«—, < < and the denotations

% -’ "
Bs(l), Bs(l), Tm((), Tm(l), < <, < will be used.
5) For any reference frames [,m e Lk(Z) the mapping uind(m),ind([) will be
denoted by (m <« [,Z). Hence:

<m <1 Z> = Wind(m),ind()-

In the case, when the changeable Z set is known in advance, the symbol Z
in the above notation will be omitted, and the denotation “(m <« [)” will be

used instead.
6) In the case, when it does not cause confusion, we will use the

denotations < , <, < instead of the denotations «, <, <.
[

7) For any reference frame [e Lk(Z) we reserve the terminology, intro-
duced in Remark 2 (where the symbol B should be replaced by the symbol

“[” and the phrase “base changeable set” should be replaced by the phrase
“reference frame”).

Definition 5. We say, that a changeable set Z 1is precisely visible if and
only if for any reference frames l,me Lk(Z) and for any element ®weBs(l)

there exist a unique element ®' € Bs(m) such, that (m <« [{o}={0'}.3

Let Z be any precisely visible changeable set and [[me Lk(Z) be any
reference frames of Z. For any oeBs(l) we denote by <! m< [,Z)co (or by
(! m« [w) the unique (in accordance with Definition 5) element ©'cBs(m)
such, that (m<« [{o}={0'}. Hence, we have VoeBs(l) (m<« [){o}=
={(! m <« o). The mapping (! m<« [):Bs({) >Bs(m) we call as the
precise unification mapping of Z.

3 In some papers (see, for example, [7, Definition 1.12.3]) it had been given another, different,
definition of precisely visible changeable set notion. Using [7, Corollary 1.12.5 and Assertion 1.12.11]
it can be proved, that Definition 5 is equivalent to the definition, given in [7].
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Assertion 1 ([6], see also [7]). Let Z be any precisely visible changeable
set, and [,m,pe Lk(Z) be arbitrary reference frames of Z . Then:

1. VoeBs(l) <! [<—[>m:co;
2.V AcBs(l) <m<—[>={<! m<—[>m|meA};

3. VoeBs(l) <! p<—m><! m<—[>(o=<! p<—[>03.

Below we present definition of universal kinematics. Universal kinematics
are mathematical objects, in which changeable sets are equipped by different
geometrical or topological structures (namely topological, linear, Banach,
Hilbert and other spaces) together with some universal coordinate transforms
between reference frames.

Definition 6. Let Z be any precisely visible changeable set. The triple of

kind F = (Z, g, @) is called by wuniversal kinematic set or, abbreviated, by
universal kinematics if and only if:
1. G is an indexed family of kind G :((%[,"‘”([) ,k[) | le Ek(Z)) :

2. Q is an indexed family of kind é = (Qm,[)[ melk(2)"

3. For any reference frame [eLk(Z) the following conditions are
satisfied:

a) (X[,||-||([)) is a linear normed space over real field R or complex field C;

b) k :Bs(l) > X, is a mapping from Bs(l) to X,.

4. For any I,me Lk (Z) the following conditions are satisfied:

a) @m,[ is a bijection (one-to-one mapping) from Tm([)xX, to Tm(m)xX, ;

b) for any elementary-time state weBs(l) the following equality is per-
formed:

(tm (<' m <—[> m),km (bs(<! m et> oa))) = Q,,, (tm (o), k& (bs(v)));

5. For any [m,peLk(Z) and weTm()xX, the following equalities are
true:

QW) =w; @, (Qu(W)=@Q, (W) (17)

From intuitive point of view we can imagine universal kinematics F in
Definition 6 as evolutionary model of some system of material points in a
some space-time environment, where evolution of the system is described by
the changeable set Z in each reference frame.

Remark 6. Let F =(2,6,Q)=(2,((X, M /) | 1€£k(2), (@), opui)

be any universal kinematics. The sets Lk(F):= Lk(Z); Ind(F) =Ind(Z)
will be called by the set of all reference frames and the set of indexes of
universal kinematics F (correspondingly).

For each index o e€Znd(F)=2Znd(Z) we use the notation:

Ik, (F) =1k, (Z).

Further we use the following notations for arbitrary reference frames
Lmelk(F)=Lk(Z):
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1. We keep all denotations, introduced for reference frames of changeable
sets (namely ind([), [, Bs(l), Bs(l), <[—, Tm(l), Tm(l), <, <) together
with abbreviated variants of these denotations, introduced in item 6) of
Remark 5 and terminology, described in item 7) of Remark 5 (where the
symbol “ Z” should be replaced by “F ”).

2. For unification mappings and precise unification mappings we use the
following notations:

<m<—[, ]—'> = <m<—[, Z>, <! m<—[,]—">o):: <! m(—[,Z>m (0 eBs(l)).

3. Denote: Zk(; F):=%,, Mk(F)=Tm(O)=xZk( F), [ =y,
q (x, F)=k(x)eX, =Zk(l; F) (xeBs(l)).
The set Zk(l; ) will be called by set of coordinate values for reference

frame [ in universal kinematics F .
4. In the cases, when the universal kinematics F is known in advance,

we will use the abbreviated wariants of denotations <m<— [>, <! m« [>w,
Zk (), Mk(1), [l and g (x) instead of (m« [, F), ({ m« [, Flo, Zk(l; F),
Mk, F), ||||[f and g (x,F) (correspondingly). The set Mk(l) we call by

Minkowski set or Minkowski space of reference frame [ in kinematics F .
5. Also we use the following notations:

Q" (@F) = (m(@),0,0s(@),  [melF|=Qy
In the cases, when the universal kinematics F is known in advance, we

use the abbreviated variants of denotations Q<[> (w) and [m <« [] instead of

QY (5 F) and [m« [F] (correspondingly). The mapping [m<« [] is called

by universal coordinate transform between reference frames [ and m in
kinematics F .
Let F be any universal kinematics and [,m,pe Lk(F) be any reference

frames of F . Then, according to Definition 6, Assertion 1 and notations, intro-
duced in Remark 6, for any elements weBs([), AcBs(l) and weMk(l) the
following equalities are performed:

<! [<—I>(D:co; <1 p<—m><! m<—[>o):<! p<—[>03; <m<—[>A:{<! m<—[>v| veA};

Q™ (<' m(—[> m) = [nu—[} Q" (0);
[u—[}w W

pem|metfy <[pei]w

The next aim is to formulate theorem on multi-image for universal
kinematics, which is the powerful tool for construction examples of universal

kinematics in particular generalized Hassani kinematics. Let ($,|{,(-")) be a
real Hilbert space such, that dim($)>1. Let B be any base changeable set
such, that Bs(B)c$H and Tm(B)=R_, where R_=(R,<) and < is the
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standard linear order over the real field% Then, according to the inclusion (15)
we have Bs(B)c Tm(B)xBs(B) cRx$H=M(9). Therefore for every mapping

U: M(H) > M(H) there exists the base changeable set U[B]=U[B,Tm(B)]
and, moreover, by Theorem 2, we get:

Tm(U[B])=Tm(B)=R_, Tm(U[B])=R, }

Bs(U[B]) = M(9), Bs(U[B]) < 9. (18)

Definition 7. Let (:{1’"'”(1))’ (%2,||-||(2)) be linear normed spaces over real or

complex field and T, =(T,,<;), T,=(T,,<,) be lnearly ordered sets. Any
bijection U:T;xX, >T,xX, between T, xX, and T,xX, is called by
coordinate transform operator (CTO) from (T;,X,) to (T,,X,). The set of all
CTO from (T},X,) to (T,,X,) we denote by Pk(T,,%X;T,,X,).

Note that the set Pk(T,,X;T,,X,) in Definition 7 is nonempty if and inly
if the sets T,xX, and T,xX, are equipotent (ie. card(T,xX%,)=card(T,xX,),
where card(A) means the cardinality of the set A).

In the case where T, =T, =R_ and ($,|{,(,)) is a real Hilbert space such,
that dim($)>1 we use the notation Pk($):=Pk(R_,H;R_,9). It is apparently
that Pk($) < Pk($), but in the general case the inverse inclusion does not

hold, because Pk(f)) contains all bijective operators over M($H)=Rx$H (not
only affine-continuous).
Theorem 3 (on multi-image for universal kinematics, [10]°). Let (9,|{,(,-))

be a real Hilbert space such, that dim($)>1 and B be a base changeable set

such, that Bs(B)c H and Tm(B)=R_ then any set of operators Sc Pk($)
generates a unique universal kinematics

F=58u(S,B;9),
satisfying the following conditions:

1. Lk(F)={(U,U[B]) | Ues}.

2. For every reference frame [=(UU[B])e Lk(F) (where UeS) it is
valid the equality (Zk(1), |)=(H,|{) (and therefore taking into account (18),
we have Mk(I)=Tm(I)xZk(()=Tm(U[B])xH=RxH=M(9) ).

3. For any reference frames [=(U,U[B])eLk(F), m=(V,V[B])eLk(F)
(where U,V €8S ) the following equalities are performed:

q(x)=x (VxeBs(l)=Bs(U[B]) < 9);

<! m<—[>w= V(U (@) (VoeBs(l)=Bs(U[B]) c M(5);

4 There exist infinitely many examples of base changeable sets B, satisfying these conditions,
because we may put B:=At (RS,R) , where R is any system of abstract trajectories from the
linear ordered set ]Rs = (R,S) to the set $). And then according to Theorem 1 and Remark 4,
we receive Tm(B) = Rs and %S(B) = U reR 9‘{(7”) cH.

5 In fact Theorem 3 is the particular case of more general theorem on multi-image for universal
kinematics, published in [10], see also [7].
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[met|w=v(U (W) (vwe Mk =M(5),

where U™ is the inverse mapping to U .
Applying Theorem 3 to the classes of operators PB($,[8]) and B, (£,[9])
(where 9 e€Y) we can introduce the following universal kinematics:

ilH:O (*67 B, 8) = ﬁu(m(ﬁ[S])’B’ f))’
UH($,B,9) = Ku(B, (9,[9]), B; 9). (19)
In the case dim($)=3, 3(A)=9,(A) (rLe€[0,%)), where ce(0,+x) the

universal kinematics ilH(f_), B, SC) represents the simplest mathematically
strict model of the kinematics of special relativity theory in inertial frames of
reference. Universal kinematics UH, ($,5,9) is constructed on the basis of ge-

neral Poincare—Hassani transforms, and it includes apart from usual reference
frames (with positive direction of time), which have understandable physical
interpretation, also reference frames with negative direction of time relatively
the given “zero” frame. So most natural generalization of the kinematics of

special relativity theory represents the kinematics of kind UH($,B,3). And
the main aim of the article is to prove that the kinematics UH($,B,9) is

certainly time irreversible for each function 3 €Y, where the strict definition
of time irreversibility will be given in the next section of the article.

3. Theorem of non returning for universal kinematics. In this section
we present the abstract notions and results, needed for derivation of main
results of the paper.

Definition 8. Let F be any universal kinematics, | € Lk(F) be any refe-
rence frame of F and ®weBs(l) be any elementary-time state in the reference

frame [. The set
o ={(m,<! m<—[>m) | meﬁk(]—")}

(where (x,y) tis the ordered pair, composed of x and y ) is called by elemen-
tary-time state of the universal kinematics F , generated by o in the refe-

rence frame [ .

Remark 7. In the case, where the universal kinematics F is known in ad-
vance, we use the abbreviated denotation o instead of the denotation o™’ .
Assertion 2 ([15]). Let F be any universal kinematics and [,me Lk(F).

Then for arbitrary elementary-time states weBs(l) and o, €Bs(m) the
following statements are equivalent:

1) o =0l™; 2) o= me No.
Corollary 1 ([15]). Let F be any universal kinematics. Then for every
[LmeLk(F) and weBs(l) the following equality holds:

o ([ metho) ™.

Theorem 4 ([15]). Let F be any universal kinematics. Then the set

IB%s[[,]:]:{(o{[’ﬂ | meIBs([)} (20)
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does mot depend of the reference frame [eLk(F) (ie. VI meCLk(F)
Bs[l, F]=Bs[m,F]).

Definition 9. Let F be any universal kinematics.

1. The set Bs(F)=Bs[[,F] ( VIeLk(F)) is called by the set of all
elementary-time states of F .

AN
2. Any subset A  Bs(F) is called by the (common) changeable system

of the universal kinematics F .
Assertion 3 ([15]). Let F be any universal kinematics and [e Lk(F) be

any reference frame of F . Then for every element ® e Bs(F) only one

A
element ©, € Bs(l) exists such, that ® = o} .

A
Definition 10. Let F be any universal kinematics, ® € Bs(F) be any

elementary-time state of F and e Lk(F) be any reference frame of F . Ele-

AN
mentary-time state o< Bs(l) is called by image of elementary-time state ® in

the reference frame [ if and only if ® = ol

AN
In accordance with Assertion 3, every elementary-time state ® € Bs(F)

always has only one image in any reference frame [eLk(F). Image of
AN
elementary-time state ® € Bs(F) in the reference frame [e Lk(F) will be
N
denoted via o 7} (in the cases, where the universal kinematics F is known

A
in advance, we use the abbreviated denotation oy ).
Assertion 4 ([15]). Let F be any universal kinematics and (e Lk(F) be
any reference frame of F . Then:

1. For arbitrary ® € Bs(F) the following equality holds:

AT A
(u){[}j o (21)
2. For each weBs(l) the following equality is valid:
Gy —
(o ){[} = o. (22)

3. The mapping (-){(} is bijection from Bs(l) onto Bs(F).
4. The mapping () is bijection from Bs(F) onto Bs(l).
5. The mapping ()y, is inverse to the mapping O

Assertion 5 ([15]). Let F be any universal kinematics and [,m e Lk(F) be
any reference frames F . Then the following statements are performed:

AN A
1. For every o € Bs(F) the equality omy =( m « oy holds.

2. For each ®weBs(l) the equality (U){[}){m} =(l m« o is performed.
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AN AN
Let F be any universal kinematics. The set Ay r) = {0){[}} | we A} 18

called image of changeable system IA\QBE(}—) in the reference frame
le Lk(F). Any changeable system (i.e. subset) AcBs([) of the reference
frame [eLk(F) always generates the (common) changeable system
AP = {m{l’f} | meA}gIBés(f).

Remark 8. In the cases, where universal kinematics F is known in
A A
advance, we use the abbreviated denotations Ay and A" instead of Aqry

and A7 (correspondingly).
Applying equalities (21) and (22), we obtain the equalities:

A NS A
Ag| =A d (a"%) =4
( {[}j and  (4Y),
(for arbitrary universal kinematics F , reference frame [e Lk(F) and chan-

geable systems A c Bs(F) as well AcBs(l)).

A mathematical object (i.e. a set) B will be called by a base changeable
set object if B satisfies one of the following conditions:

e B is a base changeable set,

e B is a reference frame, that is Beﬁk(y), where ) is a changeable set

or universal kinematics.
Definition 11. Let B be a base changeable set object.
Nonempty subset N cBs(B) is referred to as transitive in B if for any

®;,0,0; €N such, that o3 <~ ®, and ®, <~ ©®, we have ®; < ;.

The transitive subset L < Bs(B) is referred to as chain of B if for any
®,,0, € L at least one of the relations m, <— ®, or o, <— ®, is true. The set
of all chains of B we denote by LI(B):

LI(B)={L < Bs(B)| L is a chain of B}.
Definition 12. Let F be any universal kinematics. Changeable system

A C Bs(F) is called piecewise chain changeable system if and only if there

exist the sequences of changeable systems Ai,...,An < Bs(F) and reference

frames ,...,1, € Lk(F) (neN) satisfying the following conditions:

(a) (Ak] eLi(y,) (VkeLn).
{Ix}
k=1

and, moreover, in the case m>2 the following additional conditions are
satisfied:

6 Further we denote via m,n (m,neN, m<n) theset mM,N = {m,...,n}‘
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(¢) Ak Akl # D (Vkel,n—l).

(d) For each keln-1 and arbitrary o, € (Ak\ Ak+1j s
{Ge}

o, € (Akm Ak+1j the inequality tm(w,) <, tm(w,) holds.
{le}

(e) For every k e2,n and arbitrary o, € (Akuw AkJ , 0y € [Ak\ Akl)
} (e}

{6
the inequality tm(w,) <, tm () is performed.

In this case the ordered composition A:(A, (A1,[1j,...,(An,[nD will be

called by the chain path of universal kinematics F .
Definition 13. Let F be any universal kinematics.
(a) Changeable system AcBs(l) s referred to as geometrically-

stationary in the reference frame le Lk(F) if and only if AeLLl(l) and for
arbitrary ©,,0, € A the equality bs <Q<[> (031)) =bs (Q<r> (0o, )) holds.

(b) The set of all geometrically-stationary changeable systems in the
reference frame [ is denoted via Lg([,F). In the cases, where the universal

kinematics F is known in advance, we use the abbreviated denotation Lg(l).

A

N N
(¢) The chain path A = (A, (Al,[lj,...,(An,[nD in F (neN) is called by

piecewise geometrically-stationary if and only if Vk e 1,_n (Akj elLg ([k) .
{lc}

Definition 14. Let F be any universal kinematics and let

A= (A, ( 1,[1j,...,(An,[nD be arbitrary chain path in F .

1. Element os € Bs(F) is called by start element of the path A, if and
A A A AN AN A
only if ®s € A1 and for every ® € A1 the inequality tm (cosj S[l tm (‘”{[1})
{u}

is performed.

2. Element o5 € Bs(F) is called by final element of the path A, if and

A A A A

only if of € An and for every e An the inequality

tm (&{In}j < tm ((&f) J holds.
" {1}

3. The chain path A, which owns (at least one) start element and (at least
one) final element, is called by closed.

Assertion 6 ([15]). Any chain path A of arbitrary universal kinematics F
cannot have more, than one start element and more, than one final element.

Further the start element of the chain path A of the universal

kinematics F will be denoted via po(A,F), or via po(A). The final element
of the chain path A will be denoted via ki(A,F), or via ki(.A). Where the
denotations po(A) and ki(A) are used in the cases when they do not cause
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misunderstanding. Thus, for every closed chain path A both start and final
elements (po(A) and ki(A)) always exist.

Definition 15. Closed chain path A of universal kinematics F is
referred to as geometrically-cyclic in the reference frame [e Lk(F) if and

only if bs (Q<I> (po(A), )) = bs(Q“> (Ki(A)yg ))
Definition 16. Universal kinematics F is called time irreversible if and
only if for every reference frame e Lk(F) and for each chain path A, geo-

metrically-cyclic in the frame [ and piecewise geometrically-stationary in F,
it is performed the inequality tm (po (A){I}) < tm (ki (.A){[}).

Universal kinematics F is called time reversible if and only if it is not
time irreversible.

The physical sense of time irreversibility notion is that in time
irreversible kinematics there is not any process or object which returns to the
begin of the own path at the past, moving by means of “jumping” from
previous reference frame to the next frame. So, there are not temporal
paradoxes in these kinematics.

Definition 17. Let F be any universal kinematics.

1. We say that reference frame wmeLk(F) is time-positive in F
relatively the reference frame [e Lk(F) (denotation is m N 1) if and only if

for  arbitrary  wj,w,eMk(l) such that bs(w;)=bs(w,) and
tm (Wl) < tm (W2) it 18 performed the inequality,
tm([m <« (Jw,) <, tm([m < [Jw,).

2. We say that reference frame wmeLk(F) is time-negative in F
relatively the reference frame [e Lk(F) (denotation is m U} [) if and only if
for arbitrary  wy,w,eMk(l)  such that bs(w;)=bs(w,) and
tm (Wl) < tm (Wz) it 18 performed the inequality,
tm([m <« (w;) >, tm([m« [w,). 7

3. The universal kinematics F 1is called by weakly time-positive if and
only if there exists at least one reference frame |, € Lk(F) such that the corre-

lation [, % | holds for every reference frame [ Lk(F).

Remark 9. Apart from weak time-positivity we can introduce other,
more strong, form of time-positivity. We say that universal kinematics F is
time-positive if and only if for arbitrary reference frames [[me Lk(F) the

correlation [TT} m holds. It is not hard to prove that every kinematics of kind

F=UB(H,B,c) = ﬂH(S’), B, SC) (0<c<+wo) (connected with classical special

relativity) is a time-positive.
Theorem 5 (on non returning, [15]). Any weakly time-positive universal
kinematics F is time irreversible.

Definition 18. We say that the universal kinematics F, and F, are equi-

valent relatively coordinate transform and write F [=|F, if and only if:

” We note by “ > the relation, inverse to < this means that for t,reTm(m) the

m’

correlation ¢ >, T holds if and only if T< .
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1. Ind(F)=Ind(F,);
2. For every index o €Ind(F)=2Ind(F,) the following equalities hold:

Tm(lk, (7)) =Tm(lk, (%)); (23)

(Zk(lka (A); ]:1),||'||1ka(f1),fl ) = (Zk(lka (‘7:2);’7:2)’||'||1ka(_7-'2),]-'2 ) (24)

(note, that equalities (23) and (24) assure the equalities
Zk(Ik, (F,); ;) = Zk(k, (%), 75) and Mik(lk, (7 ); 7 ) = Mk(1k, (%), 7).
3. For any indexes o,peInd(F)=2Ind(F,) it is performed the equality:

|1k, () 1k, (), 5 | =[ 1k, () Ik, (5), % |

Assertion 7 ([9], see also [7]). Binary relation [=] is an equivalence relation

on any set M, which consists of universal kinematics.

Remark 10. From the point of view of physical intuition we may consider
that universal kinematics F and %, such, that F[=]F, are two different
scenarios of evolution, acting in the same space-time and coordinate-trans-
form environment.

Definition 19. We say that universal kinematics F 1is certainly time
irreversible if and only if arbitrary universal kinematics F such, that

F[=]F is time irreversible. In the opposite case we will say that universal

kinematics F is conditionally time reversible.

Since, according to Assertion 7, for each universal kinematics F it is
fulfilled the correlation F[=]F, then we receive the following Assertion as a
corollary from Definition 19:

Assertion 8. Any certainly time irreversible universal kinematics F is
time irreversible.

The physical sense of certain time irreversibility notion is that in
certainly time irreversible kinematics temporal paradoxes are impossible
basically, that is there is not potential possibility to affect the own past by
means of “traveling” and “jumping” between reference frames. Whereas, in
time irreversible, but conditionally time reversible kinematics such potential
possibility exists, but it is not realized in the scenario of evolution, acting in
this kinematics.

Assertion 9 ([15]). Let universal kinematics F be weakly time-positive.
Then every universal kinematics F, such that F[=|F is weakly time-positive
also.

Applying Assertion 9 as well as Theorem 5, we obtain the following
(strengthened) variant of theorem of non returning:

Theorem 6 ([15]). Any weakly time-positive universal kinematics F is
certainly time irreversible.

4. Criteria of Time-positivity for Affine Coordinate Transform Operators.

Definition 20. Let (%1,||-||(1)), (%2,||-||(2)) be linear mormed spaces and
T :(Tl,Sl), T, :(Tz,Sz) be linearly ordered sets. We say that CTO
MeIP’k(Tl,xl;Tz,%z) is:

1. time-positive if and only if for arbitrary t;,t, €T} and xeX, inequa-
lity t, <, t, assures the inequality, tm(U(t,,x)) <, tm(U (t,,X)), where <, and

<, are strict linear order relations, generated by <, and <, respectively;
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2. time-negative if and only if for arbitrary t,,t, €T, and xeX,
inequality t, <, t, assures the inequality, tm(U(t,,x)) >, tm(U(ty,x)) (i.e. the
inequality tm(U (t,,x)) <, tm(U (t,,x))).

Directly from Definition 17 and Definition 20 we readily obtain the

following assertion.
Assertion 10. Let F be any universal kinematics and [,m e Lk(F) be any

reference frames of F . Then the following statements hold:
L. m N5 1 if and only if the operator

[m <« []ePk(Tm(l),Zk(I); Tm(m),Zk(m)) is time-positive.
2. m U [ if and only if the operator

[m <« []ePk(Tm(l),Zk(I); Tm(m),Zk(m)) is time-negative.

Assertion 10 shows that the question on time-positivity (time-negativity)
of one reference frame relatively to other in some universal kinematics can be
reduced to the question on time-positivity (time-negativity) of coordinate
transform operator (CTO) between these reference frames. That is why
further in this section we will focus on obtaining some needed results on
time-positivity (time-negativity) of coordinate transform operators (CTOs),

namely affine CTOs in the space Pk($)) over some Hilbert space $.
For any real Hilbert space ($,[{,(,-)) and operator SePk($)) we have

SePk(b):Pk(RS,S’J;RS,YJ). So it is correct to say about time-positivity or

time-negativity of the operator S. For any operator SePk($)) we introduce
the following notation:

tsg(S) :=sign (tm(Se, —S0)) =sign (7 (Se, —S0)),
the number tsg(S) we call by time sign of the operator SePk($)).
Remark 11. If SePKk(H)NL(M($H)) then tsg(S[a]) =tsg(S) for each
ae M(9). (Where Spyw=Sw+a (weM(9)))
Indeed, by definition of tsg(-), we have:
tsg(S[a]) =sign (7 ((Se, +a)—(S0+a))) =sign (7 (Se, —S0)) = tsg(S).
Remark 12. If SePk(H)NL(M(H)) then SO =0. So in this case defini-
tion of tsg(S) reduces to more simple form:
tsg (S) = sign (tm(Se,)) = sign (7 (Se,)).
Assertion 11. Operator S € Pk($)) is:
(a) time-positive if and only if tsg(S)>0 ;
(b) time-negative if and only if tsg(S)<0.

P r o o f For convenience we introduce the following operator

E: 9> M(H):
Hox > Ex:=(0,x) e M(9),
that is E is the embedding operator of space § into M($). So, for every

vector w =(t,x)e M($) we can write:

(t,x)=te, +Ex. (25)



On time irreversibility of generalized Hassani kinematics 105

Every operator S ePk($)) can be represented by the form:
Sw=Sw+s (weM(9)), (26)

where SeL(M($)) and seM($), so s=S0. Using (25) and (26), for
arbitrary t;,t, € R and x e $ such that t, <t, we obtain:

S(ty,x)—S(t,x) = é(tz,x)—é(tl,x) = é(tzeo +Eac)—§(t1e0 +Ex) =

= é((tz —t)ey)=(t, _tl)g(eo) =
=(t,—t,)(S(ey)—s)=(t, —t;)(S(e;)—S0).
Thence: sign(tm(S(t,,x))—tm(S(t,,x)))=sign (7 (S(ty,x)-S(t,,x)))=
=sign((t, —t,)7 (S(e,)—S0)) =tsg(S).
Therefore, in the case tsg(S)>0 the inequality ¢ <t, leads to
tm(S(t,,2))—tm(S(¢,,2))>0 and operator S is time-positive as well in the
case tsg(S)<0 operator S is time-negative. ¢
Assertion 12. Let ce(0,+x), Ae[0,c), se{-11}, Je Ll(f_)l) , neB, (5’_)1)
and ae M($) then:
tsg(WM [s,mn,J; a]) =s.
P r oo f Since W, [s,nJ;a]=W, [s,n,J][kac[sqn’J] N then, according to
Remark 11, Remark 12 and formula (2), we deliver:

tsg(WM [s,m,J; a]) = tsg(Wx,C [s,m, J]) =sign (’T (Wk,c [s,n,J]e, )) =

(s’]’(eo)—%n,eo)

=sign =sign

c c

5. On Time Irreversibility of Generalized Hassani Kinematics. Before
investigating time irreversibility of generalized Hassani kinematics, we obtain
some more general results, concerning time irreversibility of the kinematics of

kind Ru (S, B;9).

Theorem 7. Let ($,|{,(,")) be a real Hilbert space such, that dim($)>1
and B be a base changeable set such, that Bs(B)c H and Tm(B)=R_. If in
the set of operators ScPk($) there exists an operator UjeS such that for
every UeS the operator Sy (w)=U, (Ufl(w)) (weM($)) is time-positive
then the kinematics F = Ru(S,B; ) is certainly time irreversible.

Proof Let UjeS be an operator, which satisfies conditions of the
theorem. Denote, [,:=(U,,U,[B]). According to Theorem 3 (item 1),
[, €Lk(F) (ie. [, is a reference frame of the kinematics F ). Consider any
reference frame [ e Lk(F). According to Theorem 3 (items 1 and 3) the frame
[ can be represented in the form [=(U,U[B]), where UeS and for the
operator [, - []e Pk(Tm(l),Zk(l); Tm(l,),Zk(1,))=Pk($) we get:
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[[0 <—er =0, (U (W) =Sy (W) (Vw e Me(t) = M(5)).

So, by conditions of the theorem, the operator [[0 <« [] is time-positive, and,
by Assertion 10, we have [, 151 for each reference frame [eLk(F).
Therefore, by Definition 17, kinematics F is weakly time-positive. Thus, by
Theorem 6, this kinematics is certainly time irreversible. ¢

Theorem 7 and Assertion 11 immediately imply the following corollary:
Corollary 2. Let (9,|,(,)) be a real Hilbert space such, that dim($)>1

and B be a base changeable set such, that Bs(B)c H and Tm(B)=R_. If in
the set of operators ScPKk($) there exists an operator U, €S such that
tsg(U0 U71)>0 for every UeS then the kinematics F =Ru(S,B;9) is
certainly time irreversible.

Denote by I or by I M(s) the identity operator over the space M($)

that is the operator such, that Iw=w (VweM($)). From Corollary 2 we

immediately deduce the following corollary:
Corollary 3. Let (9,|,(,)) be a real Hilbert space such, that dim($)>1

and B be a base changeable set such, that Bs(B)c $H and Tm(B)=R_. If the
set of operators S c Pk($)) possesses the following properties:
1. IeS; 2. tsg(U‘1)>0 for every UeS,

then the kinematics F = Ru(S,B; ) is certainly time irreversible.

Now we are near to obtain the main result of this article.
Theorem 8. Let (9,|,(,-)) be a real Hilbert space such, that dim($)=>1

and B be a base changeable set such, that Bs(B)c $H and Tm(B)=R.. Then

for any function 9eY wuniversal kinematics UH($,B,9) is certainly time

irreversible.
P r o o f. According to definition (see formula (19)), for any function
3 €Y we have the equality:

UH($,B,9) = Au (P, (9,[8]),8;9),

where (in accordance with [11, Properties 1])) the class of operators
B, (9,[9]) = Pk($) possesses the following properties:

', Teg, (H,[9]).

20 1t UeP, (H,[9]) then U B, (6,[9]).
Moreover, the class of operators P, ($,[9]) has also the following property:

3", tsg(U)=1 for every UeP, (H,[9]).
Indeed, if UeP, (9,[9]) then, according to (10) and (8), operator U can

be represented in the form U=W, g, [Ln,J; a], where Ae®.[9], neB,(9,),
Je(9,), ae M(9). And, by Assertion 12, we have,
tsg(U) = tsg(W, o, [Ln,J; a])=1.

From properties 10, 20, 30, in accordance with Corollary 3 it follows that
the kinematics UH($,5,9) =ﬁu(‘l§+ (5,[8]),B;9) is certainly timeirreversible. 4
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Remark 13. In the begin of the article we have also introduced the kine-

matics UH,(9,B,9) (together with LUH($,B,9)). Using sufficient condition of
conditionally time reversibility (see [13, Theorem 1], see also [12, Theorem 3])
it can be proven that the kinematics UH,($,B8,9) is conditionally time rever-

sible (for any function 3 €Y ). Detailed proof of the latter fact may be set
forth in future publications.
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NMPO YACOHE3BOPOTHICTb Y3AIrAllbHEHUX KIHEMATUK XACCAHI

Opuzinanvui nepemeopernus Xaccaui OYau ompumaHni 8 podomax AAHUPCHKOZO PHiduKa
M. E. Xaccani. Y3azanvreni (Hadceimaosi) kinemamuxu Xaccani 3'asuaucs 8 Konmexcmsi
y3aeanvHeHna 1 pozsumxky 10ell Xaccani. ¥ yiti cmammi 3a 00onomoz010 meopemu npo
HenogepHeHHsA 048 YHIBePCALbHUX KiHemamuk 008edeno, w0 008iabHA Y3azarbHeHa KiHe-
mamuxa Xaccani 3 000aMHUM HANPAMKOM UaACY € 0e3ymo8HO UACOHe380POMHOI0. 3
Pi3uunol mouxu 30pYy yel Pe3yALMAM O03HAUAE, WO 8 O0YOb-AKIU UACONOZUMUBHIU
y3azanvHenit kinemamuyi Xaccani 8 npunyuni ei0cymui uacosi napadoxcu, nog's3ami 3
MOHCAUBICTNIO BNAUBAMU HA 8AACHE MUHYAE 34 00N0M02010 «nodoPodKcel» 1 «nepecmpu-
OYBAHD» MINHC CUCTNEMAMU BIONTKY.

Katouoei caosa: ynigepcasvHi KiHeMamuKu, MIHAUBT MHOKCUHU, THEPUIALbHI cucmemu
81041KY, MAXIOHU, 4ACO8T NAPAOOKCU, LACOHE380POMHICTY.
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