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CLASSIFICATION OF GROUP ISOTOPES ACCORDING TO THEIR INVERSE 
PROPERTIES 

 
Coincidence of translation sets of the same directions in a quasigroup defines 
nine varieties: IP, CIP and mirror quasigroup varieties [9]. Their intersection 
with the variety of group isotopes is studied. In particular, it is proved that 
in the variety of group isotopes, the subvarieties of the middle, left and right 
mirror quasigroups coincide with the subvarieties of commutative, left and 
right symmetric quasigroups respectively. 
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Introduction. This article is a continuation of the works [8, 9]. In each 

quasigroup ,Q  six types of translations: the left, right and middle translations 
and their inverses are defined. Two translations may coincide as permutations 
of Q , and yet be different when considered upon the web of the quasigroup. 
In [8] each of the translation types will be called a direction. Properties of the 
directions are considered in [8]. Coincidence of translation sets of the same 
directions in a quasigroup defines nine quasigroup varieties. Four of them: LIP, 
RIP, MIP and CIP are well known. The remaining five quasigroup varieties are 
relatively new because they are left and right inverses of CIP variety and the 
generalization of commutative, left and right symmetric quasigroups.  

The classes of quasigroups which are isotopic to groups was under 
consideration in the works [1, 2, 4–6, 8, 12, 13] and many others. The theory 
of group isotopes was systematized in the works “On group isotopes” [4–6] 
by F. Sokhatsky. The isotopic closure of some group varieties was studied 
by G. Belyavskaya [14], A. Drápal [15], A. Tabarov [16]. The structure of CI 
quasigroups for which all LP-isotopes are CI-loops was investigated in [2] 
by V. Belousov, B. Tsurkan. 

According to the concept of parastrophic symmetry introduced by  
F. Sokhatsky [11], the class of all quasigroups is divided into six classes: the 
class of all asymmetric quasigroups and five varieties of quasigroups 
(commutative, left symmetric, right symmetric, semi-symmetric and totally 
symmetric). Each of these classes is characterized by symmetry groups of 
its quasigroups [7]. 

Here, the conditions under which these varieties of IP, CIP and 
mirror quasigroups are isotopic groups are found.  

The parastrophy orbits of quasigroups with inverse properties are 
described in the works of F. Sokhatsky, A. Lutsenko [6, 8, 9]. In parti-
cular, isotopes of the groups that are left, right (in the case  0 0  and 
 0 0  respectively), and middle IP quasigroups are described. The 
isotopes of the groups that are left and right IP quasigroups (in the case 
 0 0 ,  0 0 ) are investigated. In [9], a parastrophy orbit of varieties 
with a cross inverse property and a parastrophy orbit of varieties of 
mirror quasigroups are found.  

In [3], it is proved that a left linear quasigroup ( ; )Q  over a loop ( ; )Q  
is a CIP quasigroup with the inversion mapping  0 0 . In this paper, we 
investigate a more general case.  
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1. Preliminaries. An algebra 


  ( ; ; ; )
r

Q  with identities 

 


 ( ) ,x y y x    

 ( ) ,x y y x    ( ) ,

r
x x y y    ( )

r
x x y y  (1) 

is called a quasigroup; the operation ( )  is main, 

( ) , ( )

r
 are called left and right 

divisions of ( ) . The operation ( )  is also called invertible because 

( ) , ( )

r
 are 

its left and right inverse elements in the semigroups 


2( ; )O  and 2( ; )
r

O  respecti-

vely, where 2O  denotes the set of all binary operations defined on Q  and 

  


( )( , ) : ( ( , ), ),f g x y f g x y y      ( )( , ) : ( , ( , )).
r

f g x y f x g x y   

The set of all invertible binary operations defined on Q  is denoted by 2 . 
Each inverse of an invertible operation is also invertible. All such operations are 
called parastrophes of ( )  and they are defined by 

 


     1 2 3 1 2 3:x x x x x x ,  

where      3 : { , , , , , },S r s s sr   : (13),  : (23),r : (12).s  In particular, the 

left and right divisions of ( )  are its parastrophes. It is easy to verify equality 
     

   
   
   for all   3, S , thus 3S acts on the set 2 . 

The stabilizer and the orbit of an invertible operation f under this action 

are called parastrophic symmetry group Ps( )f  and parastrophy orbit Po( )f  

respectively. Consequently,  Ps( ) Po( ) 6f f . 

Let P be an arbitrary proposition in a class of quasigroups A . A proposition 
P  is said to be a σ-parastrophe of P , if it can be obtained from P  by replacing 

the main operation with its  1 -parastrophe. 

Let A  denote the class of all σ-parastrophes of quasigroups from A . A 
set of all pairwise parastrophic classes is called a parastrophy orbit of A  [10]: 

     3Po( ) SA A .  

A parastrophy orbit of varieties is uniquely defined by one of its varieties. 
Proposition 1. If quasigroup varieties coincide, then  -parastrophes of 

these varieties also coincide. 
Since a parastrophic orbit of varieties is the set of all parastrophes of one 

of them, then the following assertion is evident.  
Corollary 1. A variety is totally symmetric, if it is an intersection of all 

varieties of a parastrophic orbit.  
Theorem 1. [11] Let A  be  a class of quasigroups, then a proposition P  is 

true in A  if and only if P  is true in A for all   3S . 

Corollary 2. [11] Let P  be true in a totally symmetric class A , then P is 
true in A  for all  . 

Corollary 3. [11] An identity     defines a variety of quasigroups A  if 

and only if  -parastrophe    ( )  of this identity defines the variety A , 

where   3S . 
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A set of all parastrophes of A  and all their finite intersections is called a 
bunch of the class A  [11]. Therefore, a bunch of varieties is a parastrophically 
closed semilattice of varieties. 

A quasigroup is called: a LIP, RIP, MIP quasigroup, if there exist 
transformations   , ,  called a left, right, middle inversion mapping such that 
for all x  and y  the respective equalities 

   ( ) ;x xy y    ( ) ;yx x y       ( )x y y x    

are true. A quasigroup ( ; )Q  will be called: a middle CIP quasigroup, a left CIP 
quasigroup, a right CIP quasigroup, if there exist transformations  ,  ,   
called a middle, left, right inversion mapping such that for all x and y the 
respective equalities 

   ( ) ;x yx y      ( );yx y x      ( )y xy x   

are true.  
The concept of mirror quasigroups are introduced in [10]. A quasigroup 

( ; )Q  is called: a middle mirror IP quasigroup, a left mirror IP quasigroup, a 
right mirror IP quasigroup, if there exists a transformation  ,  ,   called a 
middle, left, right inversion mapping such that for all x and y the respective 
equalities 

    ( ) ;x y y x      ( );y yx x       xy y x    

are true. A groupoid ( ; )B  is called an isotope of a groupoid ( ; )A , if there are 
bijections  ,  ,   from A  to B  such that the equality     ( ) ( ) ( )x y x y  holds 

for all , .x y A  The triple   ( , , )  is called an isotopism between  ;A  and ( ; );B  

the bijections  ,  ,   are called its left, right and middle components. 
A quasigroup is called a group isotope, if it is isotopic to a group. If there 

exists a group ( ; ,0)Q and bijections  ,   and also an element a  such that 

   0 0 0  and 

     x y x a y  (2) 

for allx , y  in Q , then the quadruble   ( , , , )a  is called a 0 -canonical decom-

position of the group isotope ( ; )Q . In each group isotope, an arbitrary element 
0  uniquely defines its 0-canonical decomposition [5]. 

A quasigroup ( ; )Q  is called linear, if it is a group isotope and the coeffi-
cients of a canonical decomposition are automorphisms of the canonical decom-
position group. 

Theorem 2. [12] Each �-order quasigroup being linear over a cyclic group is 
isomorphic to exactly one quasigroup ( ; )m , where m  is the ring modulo m , 

  x y ax c by , ,a b  relatively prime to m , and c  is a common factor of m  

and 1a b  . 
Let   ( , , , )a  be a canonical decomposition of a group isotope ( ; )Q . Then 

it is easy to see that all parastrophes of ( ; )Q  have the following forms: 

    

 ,x y x a y       ,

s
x y x a y  

 

    

 1( ),x y x a y      


 1( ),
s

x y x a y  
 

     1( ),
r

x y x a y       1( ).
sr

x y x a y  
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Proposition 2. [5, Corollary 1] Let ( ; ,0)Q  be a group, ,  1,  2,  3,  4  

be bijections ofQ , besides  0 0  and let         1 2 3 4( )x y u  hold for all 

, .x y Q  Then   is an automorphism of ( ; )Q , if u x ,   y  and it is an 

anti-automorphism of ( ; )Q , if  ,u y    .x  

Corollary 4. [4] If a group isotope ( ; )Q  satisfies an identity    1 2x y  

   3 4 ,y x  and the variables x , y  are quadratic, then ( ; )Q  is isotopic to a 
commutative group. 

Theorem 3. [7] Let ( ; )Q  be a group isotope and (2) be its canonical decom-
position, then 

1) ( ; )Q  is commutative if and only if ( ; )Q  is abelian and    ; 

2) ( ; )Q  is left symmetric if and only if ( ; )Q  is abelian and    ; 

3) ( ; )Q  is right symmetric if and only if ( ; )Q  is abelian and    ; 

4) ( ; )Q  is totally symmetric if and only if ( ; )Q  is abelian and      ; 

5) ( ; )Q  is semi-symmetric if and only if   is an anti-automorphism of 

( ; ),Q     1 ,   3 1,aI    a a , where    ( )aI x a x a ; 

6) ( ; )Q  is asymmetric if and only if ( ; )Q  is not abelian or         
and at least one of the following conditions is true:   is not an anti-auto-

morphism,    1 ,    3 1,aI    a a . 

Theorem 4. [2] A left linear quasigroup ( ; )Q  over a loop ( ; )Q , where 
     x y a x y , is a CI-quasigroup relative to the permutation  , where 

 0 0 , if and only if    0a a ,    1 ,    3 0x x  for all x Q  and ( ; )Q  
is a CI-loop. 

2. A group isotope with inverse property. 
Theorem 5. [7] The parastrophic orbit of IP-quasigroups consists of three 

varieties: middle  , left   and right r  IP-quasigroups respectively. 

  s     sr
   r s

 

       ( ) ) (x y y x      ( ) ;x xy y
 

    ( ) ;yx x y  

  


( )yx z xy z    


( )z xz xy y    ( )
r

yx zx z y  

In [7] the group isotopes (in the case  0 0  and  0 0 ) in each of varieties 
of the inverse property quasigroups are described. A more general case is consi-
dered in the following theorem. 

Theorem 6. Let ( ; )Q  be a group isotope and (2) be its canonical decompo-
sition, then 

1) ( ; )Q  is an RIP quasigroup with the inversion mapping   if and only if 

  is an involutive automorphism of ( ; )Q . The inversion mapping in an MIP 

group isotope with (2) is        1( ) ( )x a x a ; 

2) ( ; )Q  is an LIP quasigroup with the inversion mapping   if and only if 
  is an involutive automorphism of ( ; )Q . The inversion mapping in an LIP 

group isotope with (2) is       1( ) ( )x a x a ; 
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3) ( ; )Q  is an MIP quasigroup with the inversion mapping   if and only if 

there exists an automorphism   such that    ( )x x c ,  2 1,cI    ,  
where   : .c a a  

Proof.  
1) Let a group isotope ( ; )Q  be an RIP quasigroup with an inversion 

mapping  , i.e., the identity   (y ) yx x holds. Using the canonical decompo-

sition (2) of ( ; )Q , we have 

         ( ) ( )y a x a x y .  

Therefore,         ( ) ( ) .y a x y x a  Proposition 1 implies that   is an 

automorphism of ( ; ,0)Q  then 

         2 ( )y a x y x a .  (3) 

If   0x y , we obtain    0a a  and if  0x , we have  

       2 0y a y a .  

Consequently,   2 . Putting the obtained relation into (3), we have 

        ( ) .y a x y x a   

Reducing y on the left in the equality and adding a  on the right: 

     ( )a x a x , i.e.,        .x a x a  Therefrom,  

        1( ) ( )x a x a . (4) 

Conversely, let ( ; )Q  be a group isotope with the canonical decompo-
sition (2) satisfying (4) then 

                     
(2)

2( ) ( ) ( ) ( ) ( )y x x y a x a x y a x a x   

                            
(4)

1( )y a x a a x a   

                          .y a x a a x a y   

Thus, the group isotope ( ; )Q  has the right inverse property. 
2) Let a group isotope ( ; )Q  be an LIP quasigroup with an inversion 

mapping  , i.e., the identity   ( ) ( )x x y y  holds. Using the canonical 

decomposition (2) of ( ; )Q , we have:         ( ) ( ) ,x a x a y y  therefrom 

          ( ) ( ) .x a y a x y   

Proposition 1 implies that   is an automorphism of ( ; ,0)Q , conse-
quently 

          2 ( ) .x a y a x y  (5) 

If   0x y , then     0a a ; if  0x , then        2 0 ,a y a y  i.e., 

  2 . 

Putting the obtained relations into (5):         ( ) .x a y a x y  
Reducing y  on the right, we obtain: 

       ( ),x a a x  i.e.,       .x a x a   

Hence,  

       1( ) ( )x a x a . (6) 
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Conversely, let ( ; )Q  be a group isotope with the canonical decompo-
sition (2). Let   be defined by (6), then 

                     
(2)

2( ) ( ) ( ) ( ) ( )x x y x a x a y x a x a y   

                            
(6)

1 2( )a x a a x a y   

                            2 .a x a a x a y y   

Thus, the group isotope ( ; )Q  has the left inverse property. 
The item 3) has been proved in [7]. 
Proposition 3 [7]. The bunch of the varieties of IP quasigroups consists 

of the following varieties: 
1) The parastrophic orbit of one-sided IP quasigroups 

     Po( ) , , ;r  

2) The parastrophic orbit of two-sided IP quasigroups 

      Po( ) , , ;m r rm  

3) The parastrophic orbit of three-sided IP quasigroups 

    


r
rm  

 

Consider linear isotopes of cyclic groups. According to Theorem 2, each 
of these quasigroups is isomorphic to a quasigroup whose operation is a 

polynomial in the ring   , ,m  modulo m. 

Corollary 5. Let ( ; )m  be a group isotope with the canonical decompo-

sition   x y ax c by , where c  is a common factor of m  and  1a b , 
then: 

1) ( ; )m  is a right IP quasigroup if and only if 2 1a . The inversion 

mapping is      1 1( )x b с ax ab c ; 

2) ( ; )m  is a left IP quasigroup if and only if 2 1b . The inversion 

mapping is      1 1( )x a bc bx a c ; 

3) ( ; )m  is a middle IP quasigroup if and only if 2 2a b . The inversion 

mapping is     1 1( )x a bx a bc c . 
Proof. 
The proof of the item 1) and the item 2) immediately follows from 

Theorem 2 and Theorem 6.  
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Consider the item 3). Let a group isotope ( ; )m  be an MIP quasigroup 

with an inversion mapping  . According to Theorem 6, ( ; )m  is a middle IP 
quasigroup with the inversion mapping   if and only if there exist k such 

that   ( )x kx d , 2 1k , a kb , where   :d kc c . Since  1k ab , then 

2 1k  is equivalent to 2 2a b . Then 

          1 1( )x kx d kx kc c ab x ab c c .  

3. A group isotope with cross inverse property. 
Theorem 7. [10] The parastrophic orbit of the CIP quasigroups consists of 

three varieties: middle A , left A  and right rA  of CIP-quasigroups respec-
tively. 

 sA A   srA A   r sA A  
   ( ) ( )x yx y     ( ) ( )xy x y     ( ) ( )x yx y  

  ( )
r

xy xz z y    yx y zx z    y xy z xz  

 
Theorem 8. Let ( ; )Q  be a group isotope and (2) be its canonical decom-

position, then: 
1) ( ; )Q  is an MCIP quasigroup with the inversion mapping   if and only 

if  is an anti-automorphism of ( ; )Q  and    1 . The inversion mapping in 

an MCIP group isotope is          2 3 1( )x a x a ; 

2) ( ; )Q  is an LCIP quasigroup with the inversion mapping   if and only 

if  is an anti-automorphism of ( ; )Q  and   2 .aI J  The inversion mapping in 

an LCIP group isotope is      ( ) .x x a a  

3) ( ; )Q  is an RCIP quasigroup with the inversion mapping   if and only 

if   an anti-automorphism of ( ; )Q  and   1 2 .aI J  The inversion mapping in 

an RCIP group isotope is      ( )x a a x . 
Proof. 
1) Let a group isotope ( ; )Q  be an MCIP quasigroup, namely the identity 

  ( ) ( )x y x y  holds. Using the canonical decomposition (2), we have: 

         ( ) ( ) ,x a y a x y   

therefore,          ( ) ( ) .y a x a x y  Proposition 1 implies that  ,   are 

anti-automorphisms of ( ; ,0)Q , then 

          2 ( ) .x a y a x y  (7) 

If   0,x y  then     0a a . If  0x , then        0 ,a y a y  

i.e.,      a y a y . From here,    , i.e.,    1 . Putting these relations 
into (7), we get:  

          1 2 1( ) ( ) .x a y a x y   

Reducing y , we obtain:        2 1 ( ).x a a x  Therefrom, 

       2 1( ) .x a x a  (8) 

Since   is an automorphism of ( ; ,0)Q , then 

         1 3 2( )x a x a . (9) 
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Conversely, let ( ; )Q  be a group isotope with the canonical decompo-

sition (2) besides   be an anti-automorphism of ( ; ,0)Q ,    1  and let   
be defined by (9): 

                       
(2)

1 1 2 1( ) ( ) ( ) ( )x y x x a y a x x a x a y   

                                
(9)

1 3 2 2 1( )a x a a x a y   

                        1 2 2 1 .a x a a x a y y   

Thus, the group isotope ( ; )Q  is an MCIP quasigroup. 
2) Let a group isotope ( ; )Q  be a LCIP quasigroup, i.e., it is defined by the 

identity   ( ) ( )x y x y  for some  . Using the canonical decomposition (2) of 

the operation ( ) , the identity can be written as          ( ) ( )x a y a x y . 

Hence,          ( ) ( ) .x a y y x a  Proposition 1 implies that   is an anti-

automorphism of ( ; ,0)Q , therefore 

          2 ( ) .y a x y x a  (10) 

If   0,x y  then    0a a . For  0x  we have      ( ) .y a y a  Thus, 

     ( )y y a a . Putting the obtained relation into the last equality, we 
get: 

             2y a x y a a x a .  

Reducing   y a , we obtain     2x a x a . Thus,  

      2 ,x a x a  i.e.,   2 .aI J   

Vice versa, let ( ; )Q  be a group isotope with the canonical decomposition 

(2) and also   2 .aI J  We’ll show that ( ; )Q  is an LCIP quasigroup with the 

inversion mapping      ( ) :y y a a , i.e., the identity   ( ) ( )x y x y  holds. 
Indeed, 

                    
(2)

2 2( ) ( ) ax y x x a y a x y a x a I J x   

                           2 2 ( )y a x a a x a y a a y .  

Thus, the group isotope ( ; )Q  is an LCIP quasigroup. 
3) Let a group isotope ( ; )Q  be an RCIP quasigroup, i.e., a quasigroup 

which satisfies the identity   ( ) ( )y x y x . Using its canonical decompo-
sition (2), the identity can be written as:  

         ( ) ( ),y a x a y x  

therefore           ( ) ( ).x a y a y x  By Proposition 1 the transformation 

  is an anti-automorphism of the group ( ; ,0)Q , hence 

           2 ( ).y a x a y x   (11) 

If   0,x y  the identity is     0a a  and if  0y , it is       ( ),a x a x  

i.e.,      ( )x a a x . Putting the obtained relations into (11), we get: 

              2y a x a y a a x .  

Reducing   a x , we have      2y a y a . Thus,  
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     2 ,y a y a  i.e.,   1 2 .aI J   

Vice versa, let ( ; )Q  be a group isotope with the canonical decomposition 

(2),   1 2
aI J  holds. We’ll show that ( ; )Q  is an RCIP quasigroup with the 

inversion mapping      ( ) :x a a x ; in other words, the identity 

  ( ) ( )y x y x  is true: 

                    
(2)

2( ) ( )y x y y a x a y y a y a x   

                            1 2 2 2 2
aI J y a y a x a y a a y a x   

              ( ).a a x x   

Hence, the group isotope ( ; )Q  is an RCIP quasigroup. 
Theorem 9. If a group isotope has two of the following properties: 

LCIP, RCIP, MCIP, then it also satisfies the third one. 
Proof. Let ( ; )Q  be a group isotope and (2) be its canonical decompo-

sition. By Theorem 6, it is enough to prove that any two equalities  

   2,aJI      1 2,aJI       1   

imply the third one. 
Let the first two equalities hold. Replace the first equality with the 

second one: 

           1 2 1 2 2 2 2( ) ( ) ( )a a a a aJI JI JI JI JI .  

Therefore,     1 2
aJI , that is, the third equality is true. 

Let the first and the third equalities hold. Substituting the third 

equality for the first one, we obtain:   1 2
aJI , i.e.,   3

aJI . 

Consequently,                   1 2 1 1 2 2 2 2 2 3 2( )( ) ( )a a a a a aJI JI JI JI JI JI  
that is, the second equality holds.  

Let the second and the third equalities hold. Replacing the third 

equality with the second one, we have    1 1 2
aJI , i.e.,   1 3

aJI . 

Therefrom,                    2 1 2 1 2 2 1 2 2 3 2( )( ) ( )a a a a a aJI JI JI JI JI JI . 
Thus, the first equality holds. 
In [12] it has been proved that each linear isotope of a cyclic group is 

isomorphic to a quasigroup which is defined on the ring modulo m (see 
Theorem 2). That is why the next corollary has been proved for all 
quasigroups. All these quasigroups are in fact linear over the finite cyclic 
groups.  

Corollary 6. Let  ( ; , )m  be the ring modulo m  and ( ; )m  be a group 

isotope with the canonical decomposition   x y ax c by , where c  is a 

common factor of m  and  1a b , then: 
1) ( ; )m  is a middle CIP quasigroup if and only if  1ab  in m . The 

inversion mapping   of the MCIP quasigroup is     2 3( ) ;x b b x bc  

2) ( ; )m  is a left CIP quasigroup if and only if  2 0a b  in m . The 

inversion mapping   of the LCIP quasigroup is    ( ) ;x abx ac c  

3) ( ; )m  is a right CIP quasigroup if and only if  2 0a b  in m . The 

inversion mapping   of the RCIP quasigroup is    ( )x c bc bax . 
Proof. The proof immediately follows from Theorem 2 and Theorem 8. 
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Note, some properties of middle CIP quasigroups which are linear 
isotopes of cyclic groups are obtained in [13]. 

Example 1. 
The quasigroup 5( ; ) , where    : 2 2 3x y x y , is a middle CIP quasi-

group and it is neither left CIP quasigroup nor right CIP quasigroup.  
Indeed according to Corollary 6, it is a middle CIP quasigroup, since 

 2 3 1  in 5 . But it is neither left CIP quasigroup nor right CIP quasi-

group because     22 3 4 3 2 0  and     22 3 2 4 1 0 in 5 . 
By Proposition 1, the variety with a three-sided cross inverse property 

is totally symmetric. We demonstrate this property by using example 2. 
Example 2. 
Consider a quasigroup 7( ; ) , where    : 3 2 5x y x y , over the field 7 . 

By Corollary 6, the quasigroup 7( ; )  belongs to each of the varieties A ,
A , rA  because 

  3 5 1,           23 5 2 5 0,           23 5 3 4 0    

in 7 . But the middle  , left   and right   inversion mappings are different:  

   ( ) : 4,x x          ( ) : 1,x x          ( ) : 5x x .  

In addition, we check the corresponding identities: 

               ( ) ( ) 3(3 2 5 ) 2 5( 4) 2 6 2 5 6 ,x y x x y x x y x y   

               ( ) 3(3 2 5 ) 2 5 2 6 2 5 1 ( ),y x y y x y y x y x x   

               ( ) 3 2 5(3 2 5 ) 3 2 3 4 5 ( ).y x y y x y y x y x x   

Since the equations that characterize the varieties of CIP quasigroups 
hold, the quasigroup 7( ; )  is totally symmetric.  

Proposition 4. The bunch of varieties of CIP quasigroups consists of 
the following varieties: 

1) The parastrophic orbit of one-sided CIP quasigroups 

  Po( ) , , ;rA A A A  

2) The parastrophic orbit of three-sided CIP quasigroups 

  


r
rmA A A A . 

 
Proof. The proof of the item 1) follows from Theorem 7 and Example 1; 

the proof of the item 2) follows from Proposition 1 and Example 2. 
Theorem 10. [10] The parastrophic orbit of mirror quasigroups consists of 

three varieties: middle M , left M  and right rM  of mirror quasigroups 
respectively. 

 sM M   srM M   r sM M  

    ( ) ( )x y y x     ( ) ( )y yx x     ( ) ( )xy y x  
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  


( )zx z y yx    y yx z zx    xy y xz z  

Theorem 11. In the variety of group isotopes the following assertions are 
true: 

1) the subvariety of MMIP quasigroups coincides with the subvariety of 
commutative quasigroups;  

2) the subvariety of LMIP quasigroups coincides with the subvariety of 
left symmetric quasigroups;  

3) the subvariety of RMIP quasigroups coincides with the subvariety of 
right symmetric quasigroups; 

4) the subvariety of left, right and middle mirror quasigroups coincides 
with the subvariety of totally symmetric quasigroups.  

Proof. Suppose ( ; )Q  is a group isotope with the canonical 
decomposition (2):  

1) Let ( ; )Q  be a middle mirror quasigroup, that is, the identity 
   ( )x y y x  holds. Taking into account (2), the identity can be written as 

         ( ) .x a y y a x   

By Corollary 4, the group ( ; )Q  is abelian. If   0,x y  we obtain  0 0 . 

If  0x , then     0a y y  and thus    . According to Theorem 3, ( ; )Q  is a 
commutative quasigroup. 

Conversely, let ( ; )Q  be commutative, then the identity    ( )x y y x  

with     is true. Therefore, ( ; )Q  is a middle mirror quasigroup. Thus, the 
subvariety of MMIP quasigroups coincides with the subvariety of commutative 
quasigroups. 

2) Let ( ; )Q  be a LMIP quasigroup, that is, the identity   ( )y yx x  holds. 

Using its canonical decomposition (2), we have:          ( ) ( )y a y a x x .  
Replacing  y a  with y , we obtain 

          ,y y x x    i.e.,            .y x y x   

Proposition 1 implies that   is an automorphism of ( ; ,0)Q . If  0x , we have 

  y y , i.e.,    . 

Since   is an automorphism and an anti-automorphism, then ( ; )Q is an abelian 
group. 

Thus,    2( ) .x x x  According to Theorem 3, if    , then ( ; )Q  is left 
symmetric quasigroup. 
Vice versa, let ( ; )Q  be a left symmetric quasigroup, then identity   ( )y yx x  

with     is true. Therefore, ( ; )Q  is a left mirror quasigroup. Thus, the 
subvariety of LMIP quasigroups coincides with the subvariety of left symmetric 
quasigroups. 

3) Let a group isotope ( ; )Q  be a RMIP quasigroup, which defines by 
the identity   ( )xy y x . Using its canonical decomposition (2), we have: 

         ( ) ( )x a y a y x .   

Replacing  a y  with y , we obtain 

         ,yx y x    i.e.,           .x y x y   

Proposition 1 implies that   is an automorphism of (Q; +, 0). If  0x , we have 
  y y , i.e.,    . 
Since   is an automorphism and an anti-automorphism, then ( ; )Q is an abelian 
group. 
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Thus,    2( ) .x x x  According to Theorem 3, if    , then ( ; )Q  is right 
symmetric quasigroup. 
Vice versa, let ( ; )Q  be right symmetric quasigroup, then identity   ( )xy y x  

with     is true. Therefore, ( ; )Q  is a right mirror quasigroup. Thus, the sub-
variety of RMIP quasigroups coincides with the subvariety of right symmetric 
quasigroups. 

The proof item 4) follows from Corollary 1 and Theorem 3. 
Corollary 7. Let ( ; )Q  be a group isotope and (2) be its canonical decom-

position, then: 
1) ( ; )Q  is an MMIP quasigroup with the inversion mapping   if and only 

if ( ; )Q  is abelian and    ,    ; 
2) ( ; )Q  is an LMIP quasigroup with the inversion mapping   if and only 

if ( ; )Q  is abelian and    ,    ; 

3) ( ; )Q  is an RMIP quasigroup with the inversion mapping   if and only 

if ( ; )Q  is abelian and    ,    . 
Proof . The proof follows from Theorem 3 and Theorem 12. 
Example 3. 
Consider examples of quasigroups that are middle, left, and right 

mirror quasigroups. By corollary 7, we get: 
1) the quasigroup 7( ; ) , where    4 2 4x y x y  over the field 7  

belongs to the variety M  because     4 ;  

2) the quasigroup 5( ; ) , where    5 3 4x y x y  over the field 5  

belongs to the variety M  because    4 ; 

3) the quasigroup 9( ; ) , where    8 1 3x y x y  over the ring 9  

belongs to the variety rM  because    8 .  
Corollary 8. If a group isotope has two of the properties: LMIP, 

RMIP, MMIP, then it also satisfies the third one.  
Proof. The proof immediately follows from Theorem 10. 
Proposition 5. The bunch of varieties of mirror quasigroups consists 

of the following varieties: 
1) The parastrophic orbit of one-sided mirror quasigroups 

  ( ) , , ;rPo M M M M  

2) The parastrophic orbit of three-sided mirror quasigroups 

  
 .r
rmM M M M  

 

 
Proof. The proof of the item 1) follows from Theorem 9 and Example 3; 

the proof of the item 2) follows from Proposition 1. 
Conclusion. 
In this article, the criteria according to which we establish the 

affiliation of group isotopes to the varieties of IP quasigroups, CIP quasi-
groups and mirror quasigroups have been found. Bunches of group isotopes 
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of IP quasigroups, CIP quasigroups, mirror quasigroups have been inves-
tigated. The corresponding semilattices have been constructed. 

A classification of group isotopes according to inverse properties of their 
elements have been obtained. The classification is presented in the following 
table: 

Variety A group isotope 
( ; )Q  Conditions of its canonical decomposition (2) 

  MIP    ,      ( )x x a a ,  2 1
cI ,   :c a a  

  LIP   2 ,       1( ) ( )x a x a  

r  RIP   2 ,        1( ) ( )x a x a  

A  MCIP    1 ,         2 3 1( )x a x a  

A  LCIP   2,aI J       ( )x x a a  

rA  RCIP   1 2,aI J       ( )x a a x  

M  MMIP ( ; )Q  is abelian and    ,     
M  LMIP ( ; )Q  is abelian and    ,     

rM  RMIP ( ; )Q  is abelian and    ,     
 
It has been proved that in the class of group isotopes, the subvarieties 

of middle, left and right mirror quasigroups coincide with the subvarieties 
of commutative, left-symmetric and right-symmetric quasigroups respec-
tively. 

It has been proved that two-sided CIP and two-sided mirror quasi-
groups do not exist. The question of constructing bunches of CIP and mirror 
quasigroups may be the subject of future research. 
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КЛАСИФІКАЦІЯ ГРУПОВИХ ІЗОТОПІВ ЗГІДНО ЇХ ВЛАСТИВОСТЕЙ ОБОРОТНОСТІ 
 
Співпадіння множин трансляцій однакових напрямків у квазігрупі визначає дев'ять 
многовидів: многовиди IP, CIP та дзеркальні квазігрупи [9]. Вивчено їх перетин із 
многовидом групових ізотопів. Зокрема, доведено, що у многовиді  групових ізотопів 
підмноговиди середньої, лівої та правої дзеркальних квазігруп співпадають з під-
многовидами комутативних, лівих та правих симетричних квазігруп відповідно. 

Ключові слова: квазігрупа, тотожність, многовид, парастроф, груповий ізотоп. 
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