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A. V. Lutsenko ™

CLASSIFICATION OF GROUP ISOTOPES ACCORDING TO THEIR INVERSE
PROPERTIES

Coincidence of translation sets of the same directions in a quasigroup defines
nine varieties: IP, CIP and mirror quasigroup varieties [9]. Their intersection
with the variety of group isotopes is studied. In particular, it is proved that
in the variety of group isotopes, the subvarieties of the middle, left and right
mirror quasigroups coincide with the subvarieties of commutative, left and
right symmetric quasigroups respectively.
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Introduction. This article is a continuation of the works [8, 9]. In each
quasigroup Q, six types of translations: the left, right and middle translations
and their inverses are defined. Two translations may coincide as permutations
of Q, and yet be different when considered upon the web of the quasigroup.
In [8] each of the translation types will be called a direction. Properties of the
directions are considered in [8]. Coincidence of translation sets of the same
directions in a quasigroup defines nine quasigroup varieties. Four of them: LIP,
RIP, MIP and CIP are well known. The remaining five quasigroup varieties are
relatively new because they are left and right inverses of CIP variety and the
generalization of commutative, left and right symmetric quasigroups.

The classes of quasigroups which are isotopic to groups was under
consideration in the works [1, 2, 4—6, 8, 12, 13] and many others. The theory
of group isotopes was systematized in the works “On group isotopes” [4—6]
by F. Sokhatsky. The isotopic closure of some group varieties was studied
by G. Belyavskaya [14], A. Dréapal [15], A. Tabarov [16]. The structure of ClI
quasigroups for which all LP-isotopes are Cl-loops was investigated in [2]
by V. Belousov, B. Tsurkan.

According to the concept of parastrophic symmetry introduced by
F. Sokhatsky [11], the class of all quasigroups is divided into six classes: the
class of all asymmetric quasigroups and five varieties of quasigroups
(commutative, left symmetric, right symmetric, semi-symmetric and totally
symmetric). Each of these classes is characterized by symmetry groups of
its quasigroups [7].

Here, the conditions under which these varieties of IP, CIP and
mirror quasigroups are isotopic groups are found.

The parastrophy orbits of quasigroups with inverse properties are
described in the works of F. Sokhatsky, A. Lutsenko [6, 8, 9]. In parti-
cular, isotopes of the groups that are left, right (in the case A0 =0 and
p0=0 respectively), and middle IP quasigroups are described. The
isotopes of the groups that are left and right IP quasigroups (in the case
M0 =0, pO0=0) are investigated. In [9], a parastrophy orbit of varieties

with a cross inverse property and a parastrophy orbit of varieties of
mirror quasigroups are found.

In [3], it is proved that a left linear quasigroup (Q;) over a loop (Q;+)
is a CIP quasigroup with the inversion mapping y0=0. In this paper, we
investigate a more general case.
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L r
1. Preliminaries. Analgebra (Q; o; o; o) with identities

l l r r
(Xey)oy =X, (Xey)ey=X, Xeo(Xoy)=y, Xo(Xey)=y @)
0
is called a quasigroup; the operation (c) is main, (o), (<r>) are called left and right

0 r
divisions of (o). The operation (o) is also called invertible because (o), (o) are
its left and right inverse elements in the semigroups (02;(?) and (O,;®) respecti-

4 r

vely, where O, denotes the set of all binary operations defined on Q and

(fOY)x.y)=Tgxy)y).  (FBY)XY):=T(xg(xy))

The set of all invertible binary operations defined on Q is denoted by A,.
Each inverse of an invertible operation is also invertible. All such operations are
called parastrophes of (o) and they are defined by

Xig © Xog = Kgg = X © X = X3,
where ceS;={, 4 r,s, s sr}, (:=(3), r:=(23),s:=(12). In particular, the
left and right divisions of (c) are its parastrophes. It is easy to verify equality

oT

© T
(oj =(o] for all 5,1e S;, thus S;acts on the set A,.

The stabilizer and the orbit of an invertible operation funder this action
are called parastrophic symmetry group Ps(f) and parastrophy orbit Po(f)
respectively. Consequently, Ps(f)-Po(f)=6.

Let P be an arbitrary proposition in a class of quasigroups A. A proposition
°P is said to be a o-parastrophe of P, if it can be obtained from P by replacing
the main operation with its o~! -parastrophe.

Let °A denote the class of all o-parastrophes of quasigroups from A. A
set of all pairwise parastrophic classes is called a parastrophy orbit of A [10]:

Po(A) = {°A o€ S;},

A parastrophy orbit of varieties is uniquely defined by one of its varieties.

Proposition 1. If quasigroup varieties coincide, then o -parastrophes of
these varieties also coincide.

Since a parastrophic orbit of varieties is the set of all parastrophes of one
of them, then the following assertion is evident.

Corollary 1. A variety is totally symmetric, if it is an intersection of all
varieties of a parastrophic orbit.

Theorem 1. [11] Let A be a class of quasigroups, then a proposition P is
true in A if and only if °P is true in “Afor all c € S;.

Corollary 2. [11] Let P be true in a totally symmetric class A, then °Pis
true in A for all 5.

Corollary 3. [11] An identity o = v defines a variety of quasigroups A if
and only if o -parastrophe °(w =v) of this identity defines the variety °A,
where ¢ € S;.
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A set of all parastrophes of A and all their finite intersections is called a

bunch of the class A [11]. Therefore, a bunch of varieties is a parastrophically
closed semilattice of varieties.

A quasigroup is called: a LIP, RIP, MIP quasigroup, if there exist
transformations A, p, p called a left, right, middle inversion mapping such that

for all x and y the respective equalities

MX)-xy=y; yx-p(X)=y; X-y=ply-X)
are true. A quasigroup (Q;-) will be called: a middle CIP quasigroup, a left CIP
quasigroup, a right CIP quasigroup, if there exist transformations vy, ¢, y
called a middle, left, right inversion mapping such that for all x and y the
respective equalities

y(X)-yx=y; yx-y=ge(X); y-xy=ry(X)
are true.

The concept of mirror quasigroups are introduced in [10]. A quasigroup
(Q;-) is called: a middle mirror IP quasigroup, a left mirror IP quasigroup, a
right mirror IP quasigroup, if there exists a transformation ¢, 6, & called a
middle, left, right inversion mapping such that for all x and y the respective

equalities
oX)-y=y-x y-yx=8(x); Xy'y=§g(x)

are true. A groupoid (B;-) is called an isotope of a groupoid (A;°), if there are
bijections o, B, y from A to B such that the equality y(x o y) = a(X)-B(y) holds
for all X,y € A. The triple (o,B,7) is called an isotopism between (A;o) and (B;-);
the bijections o, B, y are called its left, right and middle components.

A quasigroup is called a group isotope, if it is isotopic to a group. If there
exists a group (Q;+,0)and bijections o, B and also an element a such that
a0 =p0=0 and

Xoy =aX+a+py (2)

for allx, y in Q, then the quadruble (+,a,B,a) is called a 0 -canonical decom-

position of the group isotope (Q;°). In each group isotope, an arbitrary element
0 uniquely defines its 0-canonical decomposition [5].

A quasigroup (Q;°) is called linear, if it is a group isotope and the coeffi-
cients of a canonical decomposition are automorphisms of the canonical decom-
position group.

Theorem 2. [12] Each m-order quasigroup being linear over a cyclic group is
isomorphic to exactly one quasigroup (Z,,;°), where Z,, is the ring modulo m,

Xoy =ax+c+by, a, b relatively prime to m, and ¢ is a common factor of m

and a+b-1.
Let (+,a,B,a) be a canonical decomposition of a group isotope (Q;°). Then

it is easy to see that all parastrophes of (Q;°) have the following forms:

V4 S
Xoy =oaX+a+py, Xoy =BX+a+ay,
¢ st
xoy = (x—a-py), Xoy=a(-Bx-a+y),

r Sr
xoy = B (-ax—a+y), x oy =Bl (x-a-ay)
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Proposition 2. [5, Corollary 1] Let (Q;+,0) be a group, o, B;, By, Bz, Ba
be bijections of Q, besides a0 =0 and let a(B;x+B,y) =psu+p,v hold for all
X,y € Q. Then o is an automorphism of (Q;+), if u=x, v=y and it is an
anti-automorphism of (Q;+),if u=y, v=x

Corollary 4. [4] If a group isotope (Q;-) satisfies an identity o;X-w,y =
=3y - o,X, and the variables X, y are quadratic, then (Q;-) is isotopic to a
commutative group.

Theorem 3. [7] Let (Q;-) be a group isotope and (2) be its canonical decom-
position, then

1) (Q;-) is commutative if and only if (Q;+) is abelian and B =« ;

2) (Q;) is left symmetric if and only if (Q;+) is abelian and B =—t;

3) (Q;-) is right symmetric if and only if (Q;+) is abelian and o = —t;

4) (Q;-) is totally symmetric if and only if (Q;+) is abelian and B=a =—1;

5) (Q;-) is semi-symmetric if and only if o is an anti-automorphism of
Q+), B=a?, a® =-13t, aa=-a, where I,(xX)=-a+x+a;

6) (Q;7) is asymmetric if and only if (Q;+) is not abelian or —1# o # = —t
and at least one of the following conditions is true: o is not an anti-auto-
morphism, B#a?t, o®=-1;!, aa=-a.

Theorem 4. [2] A left linear quasigroup (Q;-) over a loop (Q;+), where
X-y=a+aXx+py, is a Cl-quasigroup relative to the permutation y, where

y0=0, ifand only if a+0a=0, B=a™, a®>x+yx=0 forall xeQ and (Q;+)
is a Cl-loop.

2. A group isotope with inverse property.

Theorem 5. [7] The parastrophic orbit of IP-quasigroups consists of three

varieties: middle 3, left ‘S and right "3 IP-quasigroups respectively.

S:Sws (e _ Srex r¢~s_slu~

) S R S=73

GEw) xy=py-X) | () MX)-xy=y; | (Fp) yx-p(X) =Y,

¢ ¢ r
yx =2z-(xy-2) (z-x2)-xy =y yx-(zx-2) =y

In [7] the group isotopes (in the case p0 =0 and A0 =0) in each of varieties

of the inverse property quasigroups are described. A more general case is consi-
dered in the following theorem.

Theorem 6. Let (Q;°) be a group isotope and (2) be its canonical decompo-
sition, then

1) (Q;°) is an RIP quasigroup with the inversion mapping p if and only if
o is an involutive automorphism of (Q;+). The inversion mapping in an MIP
group isotope with (2) is p(X) = B~1(-a— apXx —aa);

2) (Q;°) is an LIP quasigroup with the inversion mapping A if and only if
B is an involutive automorphism of (Q;+). The inversion mapping in an LIP

group isotope with (2) is A(X) = o }(-Ba—Pax —a) ;
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3) (Q;°) is an MIP quasigroup with the inversion mapping p if and only if

there exists an automorphism 6 such that p(x)=0x+c, 6% = Igl, o = 0B,
where c = -0a +a.

Proof.

1) Let a group isotope (Q;°) be an RIP quasigroup with an inversion
mapping p, i.e, the identity (ye X)o px =y holds. Using the canonical decompo-
sition (2) of (Q;°), we have

ofay +a+BXx)+a+Bp(X)=Vy.

Therefore, a(ay +a+pXx) =y —-pBp(x)—a Proposition 1 implies that a is an

automorphism of (Q;+,0) then
aly +o0a+apXx =y —Pp(X)-a. (3)

If x=y=0, we obtain aa =-Bp0—a and if x =0, we have
a’y+oa=y—-pp0-a.

Consequently, a? =1. Putting the obtained relation into (3), we have
y+aa+afX=y-Bp(xX)-a

Reducing yon the left in the equality and adding a on the right:
aa+opfx+a=-Pp(x), ie, ppx =-a-afx—-aa Therefrom,

p(X) =B (-a-apx - aa). (4)
Conversely, let (Q;°) be a group isotope with the canonical decompo-
sition (2) satisfying (4) then
(@]
(Y o X) o p(X) = afoy + a+ BX) + a+ Pp(X) = o’y + aa+ ap X+ a+ Bp(X)=

4)
=y+oa+apx+a+ppi(-a-apx—oa)=

=y+oa+ofXx+a—a—-apfx-oa=y.

Thus, the group isotope (Q;°) has the right inverse property.

2) Let a group isotope (Q;°) be an LIP quasigroup with an inversion
mapping A, ie., the identity A(X)o(Xoy)=y holds. Using the canonical
decomposition (2) of (Q;<), we have: ai(X)+a+ Bax +a+py) =Yy, therefrom

Blax +a+Py)=—-a—ar(X)+Vy.

Proposition 1 implies that B is an automorphism of (Q;+,0), conse-
quently

Bax +Pa+ P2y = —-a—or(X) +Y. (5)

If x=y=0, then Ba=-a-aA0; if x=0, then Pa+p’y=-a-ar0+y, ie,
B2 =1.

Putting the obtained relations into (5): Bax +pa+y=-a—-ai(X)+Yy.
Reducing y on the right, we obtain:

Boax +pa=-a—-ai(x), i.e, aiXx =—-pa-Pax-a.
Hence,

Mx) = a™H(-pa—Pox-a). (6)
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Conversely, let (Q;°) be a group isotope with the canonical decompo-
sition (2). Let L be defined by (6), then

AMX) o (Xoy) (i) ar(X) + a+Blax + a+Py) = ar(X)+ a+ Pax+pa+p2y=

= oot (-Ba—Pax—a)+a+Pax—a+p2y =
= —Ba-Bax—a+a+Pax+Ba+ply =y.

Thus, the group isotope (Q;°) has the left inverse property.
The item 3) has been proved in [7].

Proposition 3 [7]. The bunch of the varieties of IP quasigroups consists
of the following varieties:

1) The parastrophic orbit of one-sided [IP quasigroups
Po(3) = {3, /3, "5

2) The parastrophic orbit of two-sided IP quasigroups
PO(S) = {Sém’sirvsrm};

3) The parastrophic orbit of three-sided I[P quasigroups
Sym =3IN'IN'S

‘3 js 3

S(Tm
Consider linear isotopes of cyclic groups. According to Theorem 2, each
of these quasigroups is isomorphic to a quasigroup whose operation is a

polynomial in the ring (Z,,,+,-) modulo m.

Corollary 5. Let (Z,,;°) be a group isotope with the canonical decompo-
sition Xoy =ax+c+by, where ¢ is a common factor of m and a+b-1,
then:

1) (Z,;°) is a right IP quasigroup if and only if a?> =1. The inversion
mapping is p(X) = -blc—ax—abc;

2) (Z,,:°) is a left IP quasigroup if and only if b? =1. The inversion
mapping is A(x) = —a thc - bx —alc;

3) (Z,,;°) is a middle IP quasigroup if and only if a? = b?>. The inversion
mapping is p(x) =abx —athc+c.

Proof.

The proof of the item 1) and the item 2) immediately follows from
Theorem 2 and Theorem 6.
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Consider the item 3). Let a group isotope (Z,,;°) be an MIP quasigroup
with an inversion mapping p. According to Theorem 6, (Z,,;o) is a middle IP
quasigroup with the inversion mapping p if and only if there exist k such
that p(x) =kx+d, k?=1, a=kb, where d:=-kc+c. Since k=ab?, then
k? =1 is equivalent to a? = b?. Then

u(x) =kx+d=kx-kc+c=ab*x-abc+c.
3. A group isotope with cross inverse property.
Theorem 7. [10] The parastrophic orbit of the CIP quasigroups consists of

three varieties: middle A, left ‘A and right "A of CIP-quasigroups respec-
tively.

A = SA Z(A:SI’A I’A:S/,A
Gy) y(X)-yx =y (Be) xy - x = &(y) Br) x-yx=1v(y)
r
Xy-(Xxz-2)=y yX-y =12X-Z y-Xy=2:XZ

Theorem 8. Let (Q;°) be a group isotope and (2) be its canonical decom-
position, then:
1) (Q;°) is an MCIP quasigroup with the inversion mapping vy if and only

if ois an anti-automorphism of (Q;+) and B=oa"'. The inversion mapping in

an MCIP group isotope is w(X) = -a2a-ox-ara;
2) (Q;0) is an LCIP quasigroup with the inversion mapping ¢ if and only

if o is an anti-automorphism of (Q;+) and B = I,Ja?. The inversion mapping in
an LCIP group isotope is g(X) = afX + aa+ a.
3) (Q;0) is an RCIP quasigroup with the inversion mapping y if and only

if B an anti-automorphism of (Q;+) and o = 1;1JB?. The inversion mapping in
an RCIP group isotope is y(X) =a+pa+ pax.

Proof.

1) Let a group isotope (Q;o) be an MCIP quasigroup, namely the identity
y(X)e(yeoX) =Yy holds. Using the canonical decomposition (2), we have:

ay(X)+a+play+a+px)=y,
therefore, B(ay +a+BX)=-a—ay(X)+Yy. Proposition 1 implies that §, o are
anti-automorphisms of (Q;+,0), then
B?x + Ba+ Bay = —a—ay(x) +V. (@)
If x=y=0, then Ba=-a—-ay0. If x=0, then Ba+pay=-a—ay0+y,

ie, pa+pay=pa+y. From here, o =1, ie, p=at. Putting these relations
into (7), we get:

(@ )Px+ala+y=-a—ayX)+y.
Reducing y, we obtain: o 2x + o ta = —a— ay(X). Therefrom,

—ay(X) =a+a?x+ala (8)
Since —a is an automorphism of (Q;+,0), then

y(x) = —ata—ax-aa. 9)
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Conversely, let (Q;°) be a group isotope with the canonical decompo-

sition (2) besides o be an anti-automorphism of (Q;+,0), B=a* and let y
be defined by (9):

(@)
W(X) o (Yo X) = ay(X) +a+a (ay+a+ox) = ayx+a+ox+ala+ y=
© 1 3 2 2 1
=o(-aa-a X —oa)+a+o T X+aaty=
= olta-a?x-at+at+aX+ata+y=y.

Thus, the group isotope (Q;c) is an MCIP quasigroup.

2) Let a group isotope (Q;o) be a LCIP quasigroup, ie, it is defined by the
identity (Xoy)ox =g(y) for some ¢. Using the canonical decomposition (2) of
the operation (o), the identity can be written as a(ax +a+py)+a+px =¢(y).
Hence, o(aXx +a+By) =¢(y)—BXx—a. Proposition 1 implies that o is an anti-
automorphism of (Q;+,0), therefore

afy + aa + a?x = g(y) — px —a. (10)

If x=y=0, then ca=¢0-a. For x=0 we have apy+aa=c¢(y)—a. Thus,
g(y) = apy + aa+a. Putting the obtained relation into the last equality, we
get:

apy +oa+a’X = apy+oa+a—px—a.
Reducing apy +aa, we obtain a?x =a-px—a. Thus,

Bx =—a-o’x+a, ie, p=1,Jo%
Vice versa, let (Q;o) be a group isotope with the canonical decomposition

(2) and also B = IaJocz. We’ll show that (Q;°) is an LCIP quasigroup with the
inversion mapping ¢(y) = afy +aa+a, i.e, the identity (Xoy)oXx = ¢(y) holds.
Indeed,

@
(Xoy)o X =a(aX+a+py)+a+px=oapy+aa+ax+a+ l,Jo’x=

—ofy+oa+a’x+a—a—oa’x+a=afy+oaa+a=c(y).

Thus, the group isotope (Q;e) is an LCIP quasigroup.

3) Let a group isotope (Q;o) be an RCIP quasigroup, i.e.,, a quasigroup
which satisfies the identity yo(xoy)=y(X). Using its canonical decompo-
sition (2), the identity can be written as:

ay +a+plax +a+py) = y(X),
therefore B(ax +a+py) =-a—ay+y(X). By Proposition 1 the transformation
B is an anti-automorphism of the group (Q;+,0), hence

B%y + pa+ Pox = —a—ay + y(X). (11)
If x=y=0, theidentity is ca=-a+v0 and if y =0, itis pa+ Bax =-a+ y(x),
ie, y(X) =a+pa+pax. Putting the obtained relations into (11), we get:

B%y +Pa+Pox = -a—oay +a+pa+pox.

Reducing pa+pax, we have B’y =-a-ay+a. Thus,
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ay=a-piy—a, ie, a=I1;1Jp2
Vice versa, let (Q;o) be a group isotope with the canonical decomposition

(2), a= Ié;l\]B2 holds. We’ll show that (Q;0) is an RCIP quasigroup with the
inversion mapping y(X) =a-+pa+pax; in other words, the identity
Yo (Xoy)=1v(X) is true:

2
Yyo(Xoy)=ay+a+pax+a+py)=ay+a+ Bzy+[3a+ Bax=

= 1;1p%y +a+ PPy + Pa+Pax =a-Ply—a+a+ By +pa+Pax =

=a+pa+Pax = y(x).

Hence, the group isotope (Q;°) is an RCIP quasigroup.

Theorem 9. If a group isotope has two of the following properties:
LCIP, RCIP, MCIP, then it also satisfies the third one.

Proof. Let (Q;o) be a group isotope and (2) be its canonical decompo-
sition. By Theorem 6, it is enough to prove that any two equalities

B=Jdla®, o=JI7'% B=o

imply the third one.
Let the first two equalities hold. Replace the first equality with the
second one:

o= JIJP% = JI1(J1,0%) - (J1,02) = a?(JN,)0?.

Therefore, ot = J|a0L2 =f, that is, the third equality is true.

Let the first and the third equalities hold. Substituting the third

2

equality for the first one, we obtain: o =JI,0?, ie, Jl, =a>.

Consequently, JI;8? = JI;B-B = JI;L(J1,0%)(IN,0%) = o?(JN)0? = o?oe? = a
that is, the second equality holds.
Let the second and the third equalities hold. Replacing the third

equality with the second one, we have B =JI]'p?, ie, JI;t =p3.

Therefrom, Jl,o? = Jlo-a = I, (JIFP2)(IIF1P?) = B2(IHR% = BR3P = B.

Thus, the first equality holds.

In [12] it has been proved that each linear isotope of a cyclic group is
isomorphic to a quasigroup which is defined on the ring modulo m (see
Theorem 2). That is why the next corollary has been proved for all
quasigroups. All these quasigroups are in fact linear over the finite cyclic
groups.

Corollary 6. Let (Z,,;+,-) be the ring modulo m and (Z,,;°) be a group
isotope with the canonical decomposition Xy =ax+c+by, where c is a
common factor of m and a+b-1, then:

1) (Z,,;°) is a middle CIP quasigroup if and only if ab=1 in Z,,. The
inversion mapping y of the MCIP quasigroup is w(x) = -b? —b*x —bc;

2) (Z,,;°) is a left CIP quasigroup if and only if a2 +b=0 in Z,. The
inversion mapping ¢ of the LCIP quasigroup is g(x) =abx+ac+c;

3) (Z,;°) is a right CIP quasigroup if and only if a+b®*=0 in Z,,. The
inversion mapping y of the RCIP quasigroup is y(x) = c + bc + bax.

Proof. The proof immediately follows from Theorem 2 and Theorem 8.
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Note, some properties of middle CIP quasigroups which are linear
isotopes of cyclic groups are obtained in [13].
Example 1.

The quasigroup (Zs;o) , where xoy :=2x+2+3y, is a middle CIP quasi-
group and it is neither left CIP quasigroup nor right CIP quasigroup.

Indeed according to Corollary 6, it is a middle CIP quasigroup, since
2-3=1in Zg. But it is neither left CIP quasigroup nor right CIP quasi-

group because 22 +3=4+3=220 and 2+3?=2+4=120in Zs.

By Proposition 1, the variety with a three-sided cross inverse property
is totally symmetric. We demonstrate this property by using example 2.
Example 2.

Consider a quasigroup (Z;o), wherex oy =3x+2+5y, over the field Z,.
By Corollary 6, the quasigroup (Z,;o) belongs to each of the varieties A,
‘A,"A because

3.5=1, ¥ 4+5=2+5=0, 3+52=3+4=0
in Z,. But the middle vy, left ¢ and right y inversion mappings are different:
y(X) = X+4, g(X) =x+1, ¥(X)=Xx+5.

In addition, we check the corresponding identities:
(Xoy)oy(X)=3BX+2+5y)+2+5(X+4)=2X+6+Yy+2+5x+6=Y,
(YoX)oy =3By +2+5X)+2+5y=2y+6+ X+2+5y=Xx+1=¢(X),
Yo(Xoy)=3y+2+5@8X+2+5y)=3y+2+ X+3+4y=X+5=17y(X).

Since the equations that characterize the varieties of CIP quasigroups

hold, the quasigroup (Z,;°) is totally symmetric.

Proposition 4. The bunch of varieties of CIP quasigroups consists of
the following varieties:

1) The parastrophic orbit of one-sided CIP quasigroups
Po(A) = {A, A, "A};

2) The parastrophic orbit of three-sided CIP quasigroups
A =AN'ANTA.

A Bl 9

Qlf?"m
Proof. The proof of the item 1) follows from Theorem 7 and Example 1;
the proof of the item 2) follows from Proposition 1 and Example 2.
Theorem 10. [10] The parastrophic orbit of mirror quasigroups consists of
three varieties: middle M, left ‘M and right "M of mirror quasigroups
respectively.

M:SM Z(M:SI’M I’M:S/,M

(F9) o(X)-y=y-Xx | (38) y -yx=0(x) | (&) xy-y = §&(X)
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V4
(zx-2)-y =yx Y- yX =2Z-ZX Xy-y=XZ-Z

Theorem 11. In the variety of group isotopes the following assertions are
true:

1) the subvariety of MMIP quasigroups coincides with the subvariety of
commutative quasigroups;

2) the subvariety of LMIP quasigroups coincides with the subvariety of
left symmetric quasigroups;

3) the subvariety of RMIP quasigroups coincides with the subvariety of
right symmetric quasigroups;

4) the subvariety of left, right and middle mirror quasigroups coincides
with the subvariety of totally symmetric quasigroups.

Proof. Suppose (Q;) is a group isotope with the canonical
decomposition (2):

1) Let (Q;) be a middle mirror quasigroup, that is, the identity
o(X)-y =y-x holds. Taking into account (2), the identity can be written as

ap(X)+a+ Py =ay+a+px

By Corollary 4, the group (Q;+) is abelian. If x =y =0, we obtain ag0=0.
If x=0, then ap0+ By = ay and thus B = a. According to Theorem 3, (Q;-) is a

commutative quasigroup.
Conversely, let (Q;:) be commutative, then the identity ¢(X)-y=y-X

with ¢ =1 is true. Therefore, (Q;) is a middle mirror quasigroup. Thus, the

subvariety of MMIP quasigroups coincides with the subvariety of commutative
quasigroups.
2) Let (Q;:) be a LMIP quasigroup, that is, the identity y-yx = 8(x) holds.

Using its canonical decomposition (2), we have: ay +a+ B(ay + a+ BXx) = 8(X) .
Replacing ay +a with y, we obtain

y+B(y+px)=3(x), ie, PB(y+px)=-y+38(x).
Proposition 1 implies that B is an automorphism of (Q;+,0). If x =0, we have
Py =-y.ie, B=-1.
Since a is an automorphism and an anti-automorphism, then (Q;+)is an abelian
group.

Thus, @(X) =p?>x = Xx. According to Theorem 3, if ¢ =1, then (Q;) is left

symmetric quasigroup.
Vice versa, let (Q;-) be a left symmetric quasigroup, then identity y - yx = §(X)
with & =1 is true. Therefore, (Q;) is a left mirror quasigroup. Thus, the
subvariety of LMIP quasigroups coincides with the subvariety of left symmetric
quasigroups.

3) Let a group isotope (Q;) be a RMIP quasigroup, which defines by
the identity xy-y =§(x). Using its canonical decomposition (2), we have:
a(aX +a+py)+a+py=E&(X).

Replacing a + By with y, we obtain

a(ax+y)+y=¢&(x), ie, o(ax+y)=E&(X)-y.
Proposition 1 implies that o is an automorphism of (Q; +, 0). If x =0, we have
oy =-y, ie, a=-1.
Since a is an automorphism and an anti-automorphism, then (Q;+)is an abelian
group.
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Thus, @(X) = a®x = x. According to Theorem 3, if £ =1, then (Q;) is right
symmetric quasigroup.
Vice versa, let (Q;) be right symmetric quasigroup, then identity xy -y = §(X)
with & = is true. Therefore, (Q;-) is a right mirror quasigroup. Thus, the sub-
variety of RMIP quasigroups coincides with the subvariety of right symmetric
quasigroups.

The proof item 4) follows from Corollary 1 and Theorem 3.

Corollary 7. Let (Q;-) be a group isotope and (2) be its canonical decom-
position, then:

1) (Q;-) is an MMIP quasigroup with the inversion mapping ¢ if and only
if (Q;+) isabelianand B=a, ¢=1;

2) (Q;-) is an LMIP quasigroup with the inversion mapping & if and only
if (Q ;+) is abelian and B=-1, 8 =1;

3) (Q;7) is an RMIP quasigroup with the inversion mapping & if and only
if (Q;+) isabelianand a=-1, E=1t.

Proof. The proof follows from Theorem 3 and Theorem 12.

Example 3.

Consider examples of quasigroups that are middle, left, and right
mirror quasigroups. By corollary 7, we get:

1) the quasigroup (Z;;-), where X-y=4Xx+2+4y over the field Z,

belongs to the variety M because a=0p=4;
2) the quasigroup (Zs;*), where X*y =5x+3+4y over the field Z;

belongs to the variety ‘M because p=4=—1;
3) the quasigroup (Zg;°), where Xoy=8x+1+3y over the ring Z,

belongs to the variety "M because o =8 = —1.

Corollary 8. If a group isotope has two of the properties: LMIP,
RMIP, MMIP, then it also satisfies the third one.

Proof. The proof immediately follows from Theorem 10.

Proposition 5. The bunch of varieties of mirror quasigroups consists
of the following varieties:

1) The parastrophic orbit of one-sided mirror quasigroups

Po(M) = {M, ‘M, "M/;
2) The parastrophic orbit of three-sided mirror quasigroups
Mym=Mn‘Mn"™M.

oam gfm e

S):thf'm
Proof. The proof of the item 1) follows from Theorem 9 and Example 3;
the proof of the item 2) follows from Proposition 1.
Conclusion.
In this article, the criteria according to which we establish the
affiliation of group isotopes to the varieties of IP quasigroups, CIP quasi-
groups and mirror quasigroups have been found. Bunches of group isotopes
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of IP quasigroups, CIP quasigroups, mirror quasigroups have been inves-
tigated. The corresponding semilattices have been constructed.

A classification of group isotopes according to inverse properties of their
elements have been obtained. The classification is presented in the following
table:

Variety A group ;i'sotope Conditions of its canonical decomposition (2)
3 MIP a=0B, ux)=6x—-0a+a, 0> =11, c:=-ba+a
ts LIP B2 =1, MX) = a}(-pa—Poax —a)
'3 RIP a® =1, p(X) =P (-a—apx —aa)
A MCIP B=al, y(x)=-a?a-a3x-ala
‘A LCIP B=1,d02, &X)=apx+aa+a
A RCIP a = 1;1IB%, y(x)=a+Ba+pax
M MMIP (Q;+) isabelianand f=0a, =1
‘M LMIP (Q;+) is abelian and B=-1,5 =1
Ty RMIP (Q;+) is abelian and o = -1, £=1

It has been proved that in the class of group isotopes, the subvarieties
of middle, left and right mirror quasigroups coincide with the subvarieties
of commutative, left-symmetric and right-symmetric quasigroups respec-
tively.

It has been proved that two-sided CIP and two-sided mirror quasi-
groups do not exist. The question of constructing bunches of CIP and mirror
quasigroups may be the subject of future research.
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KNACU®IKALIA MPYNOBUX I30TONIB 3rigHO iX BNIACTUBOCTEA OBOPOTHOCTI

Cnienadinmnsa MHONCUH MPAHCAAYIT 00HAKOBUL HANPAMKIE Y K8a3lepyni susHauae 0es'amsb
MmHozosudie: muozosudu IP, CIP ma d3epranvui keasiepynu [9]. Busueno ix nepemumn i3
MHO208UOOM 2PYNOBUX 130Mmonie. 3oxpema, 0ogedero, W0 Y MHO208UOT 2PYNOBUX 130MONI8
niOMHO208UOU CePedHBOL, A180T MA NPAsol 03ePKALBHUX Kea3lepyn cnisnadaroms 3 nio-
MHO0208UOAMU KOMYMAMUBHUX, NBUX MA NPABUL CUMEMPULHUL KEA3T2PYN 810N06810HO.

Kaiouoei caoea: Keasziepyna, momoicHicms, MH0208uU0, napacmpod, pynosuti i30mon.
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