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ON TERNARY QUASIGROUP QUADRATIC IDENTITIES OF THE SMALL 
LENGTH 

 
In this article, it has been proved that each quadratic identity of the lengths one, 
two, three is parastrophically primarily equivalent to at least one of the given 
identities. The identities of the length three have been analyzed in the class of 
universal loops, i.e., quasigroups in which every element is neutral. It has been 
proved that there are five non-equivalent identities. The first identity defines the 
class of all universal loops, the second one defines the variety of the boolean skeins 
and the other three identities define three parastrophic varieties whose operations 
are repetition-free compositions of binary commutative middle loops.  
. 
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Introduction. This article is the continuation of the articles [3, 4] and all 

necessary concepts and results can be found there. 
In [3], the quadratic generalized functional equations of the length three 

on invertible functions (i.e., quasigroup operations) are studied: general solutions 
of each element from the family of pairwise parastrophically primarily non-
equivalent equations have been found; a full proof of the classification theorem 
is given. 

A quasigroup functional equation, whose functional variables are 
parastrophic, is an identity in the variety of quasigroups. A ternary quasigroup 
in which each element is neutral, is called universal loop. For example, a ternary 
Steiner quasigroup is exactly a totally symmetric universal loop. 

In this article, the solutions of all representatives of the classification in the 
variety of all universal loops are given (Theorem 7). Using the obtained results, 
it is proved that each ternary quasigroup quadratic identity of the length three 
is equivalent to exactly one of the given identities (Theorem 3). The first 
identity defines the class of all universal loops, the second one defines the 
variety of the boolean skeins [2] and the other three identities define three 
parastrophic varieties whose operations are repetition-free compositions of 
binary commutative middle loops (Theorem 4). The identities of the lengths one 
and two are parastrophically primarily equivalent to at least one of the 
identities given in Corollaries 1 and 2. 

1. Preliminaries.  

An algebra

 ( ; , , )

r
Q  is called a quasigroup if the following identities are 

true: 

 


( )x y y x ,   

( )x y y x ,    ( )

r
x x y y ,   ( )

r
x x y y .  

An element 0  is called left, right, middle neutral for an invertible operation
( ) , if the respective identity is true: 

 0 x x ,    0x x ,    0x x .  

In this case, the quasigroup ( ; ,0)Q  is a left, right, middle loop respectively. 
One can find a more detailed information in [6]. Note, the left parastrophe of a 
middle loop is a left loop and its right parastrophe is a right loop. 
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A quasigroup is called a group isotope if it is isotopic to a group. If  

      ( ) ( )x y x a y ,       0 0 0 ,   (1) 

where ( ; ,0)Q  is a group, then the tuple   ( , , , )a  is called a canonical decom-
position defined by 0 of the group isotope ( ; )Q . 

Theorem 1[7]. Each element of a group isotope uniquely defines its canonical 
decomposition. 

Proposition 1. If a commutative middle loop ( ; ,0)Q  is a group isotope, then 
its canonical decomposition defined by 0 is 

     ( ) ( )x y x y   

where ( ; ,0)Q  is a group of exponent two, i.e. it is a totally symmetric group. 
P r o o f .  Let ( ; ,0)Q  be a commutative middle loop which is a group isotope 

and let (1) be its canonical decomposition defined by0 . Since the group isotope 
is commutative, then    . Moreover,       0 0 0 (0) (0)a a . The equa-

lity  0x x  means    ( ) ( ) 0x x . Replacing ( )x  with x , we obtain 
  0x x  which means that the group ( ; ,0)Q  has exponent two. 

A length of a subterm is called the quantity of functional symbols in it. An 
identity is called quadratic, if in it each variable appears twice. 

Theorem 2. [7] Let a quasigroup satisfy a quadratic identity in three 
variables satisfying the conditions: the sets of variables of subterms of the length 
one has two variables and these sets are pairwise different, the set of variables 
of a subterm of the length two has three elements. Then the quasigroup is isotopic 
to a group. 

An algebra      ( )f f f f  (in brief, ( ; )Q f  is called a ternary quasigroup, 
if it satisfies the following identities: 

 (14)( ( , , ), , )f f x y z y z x ,        (14) ( ( , , ), , )f f x y z y z x ,  

 (24)( , ( , , ), )f f x y z zx y ,       (24) ( , ( , , ), )f f x y z zx y ,  (2) 

 (34)( , , ( , , ))f y f x y zx z ,       (34) ( , , ( , , ))f y f x y zx z .  

The operation f  is called invertible. A ternary quasigroup is a universal 
loop, if each element is neutral, i.e., 

        , , , , , ,f y x x f x y x f x x y y .  (3) 

A ternary totally symmetric universal loop is called an SQS-skein which is 
also called Steiner Ternar idempotent totally symmetric 3-quasigroup, or Steiner 
3-quasigroup [1, 2, 8]. 

A  -parastrophe of an invertible operation f  is called an operation f  
defined by 

 
      1 2 3 4 1 2 3 4 4( , , ) : ( , , ) ,f x x x x f x x x x S ,  

where 4S  denotes the group of all bijections of the set {1,2,3,4} . Therefore in 
general, every invertible operation has 24 parastrophes. Some of them can 
coincide. If all parastrophes coincide, the quasigroup is called totally symmetric. 
Since parastrophes of a quasigroup satisfy the equalities 

   ( )f f  and   f f ,  (4) 

then the symmetric group 4S  defines an action on the set 3  of all ternary 
invertible operations defined on the same carrier. In particular, the fact implies 
that the number of different parastrophes of an invertible operation is a factor 
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of 24. More precisely, it is equal to 24/ | Ps( ) |f , where Ps( )f  denotes a stabilizer 

group of f  under this action which is called parastrophic symmetry group of 

the operation f . Consequently, a totally symmetric quasigroup is a quasigroup 

whose parastrophic symmetry group is 4S . If the parastrophic symmetry group 
of a ternary quasigroup is trivial, then the quasigroup has 24 different para-
strophes and it is called asymmetric. 

Thus, a quadratic identity of the length three is an identity whose 
individual variables appear twice in it and it has three functional symbols. 

For example, all of the identities 

   ( ( , , ), , ) ( , , )f f x y z x u f y z u  where     4, , S .  

are ternary quadratic identities of the length three. 
2. The main result. 
Theorem 3. In the variety � of all ternary universally loops, each quadratic 

identity of the length three is equivalent to exactly one of the following identities: 

 ( , , ( , , )) ( , , )f z x f x y y f z u u , (5) 

 ( , , ( , , )) ( , , )f x u f y u z f x y z ,  (6) 

 ( ( , , ), , ) ( , , )f f x y z z u f y x u , (7) 

 ( , , ( , , )) ( , , )f x y f y z u f x u z , (8) 

 ( ( , , ), , ) ( , , )f f x y z u y f z u x . (9) 

The identity (6) is equivalent to ( , , ( , , )) ( , , )f z x f x y y f z u u  which is obtai-
ned in [2]. 

Theorem 4. In the variety of all universal loops �, the identities (5)–(9) 
define the following subvarieties: 

1. (5) defines the variety �; 
2. (6) defines the variety � of boolean skeins, i.e., the class of all ternary 

quasigroups ( ; )Q f  such that   ( , , )f x y z x y z  for some boolean group ( ; )Q ; 

3. (7) the variety A  of all ternary quasigroups ( ; )Q f  such that 



( , , ) ( )f x y z x y z  for some commutative middle loop ( ; )Q ; 

4. (8) defines the variety (13)  A  of all ternary quasigroups ( ; )Q f  such that 



( , , ) ( )f x y z z y x  for some commutative middle loop ( ; )Q ; 

5. (9) defines the variety (23)  A  of all ternary quasigroups      such that



( , , ) ( )f x y z x z y  for some commutative middle loop ( ; )Q . 

The obtained varieties are solutions of A. Krapež’s functional equation 
( , , )F x x y y  and thus it is a partial solution of his problem. 

3. Functional equations. 
Let 3  be the set of all invertible ternary functions defined on a carrier 

Q . The relationships (2) and (4) are true for all functions from 3 . In other 

words, the following hyperidentities are true over the set 3 : 

   ( )F F ,  F F ,               (14) ( ( , , ), , )F F x y z y z x ;  

 (24) ( , ( , , ), )F x F x y z z y ;          (34) ( , , ( , , ))F x y F x y z z ; (10) 

 
  1 2 3 1 2 3( , , ) ( , , )F x x x F x x x ,      3S .  
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The hyperidentities are called primary. 
Two quasigroup functional equations are called: equivalent over a set Q  if 

they have the same solution set over the carrier; equivalent if they are 
equivalent over each set. 

Definition 1. [5] Two functional equations are called parastrophically 
primarily equivalent if one can be obtained from the other in a finite number 
of the following steps: 1) replacing the equation sides; 2) renaming the func-
tional variables; 3) renaming the individual variables; 4) applying the hyper-
identities (10). 

Lemma 1. Let     and      be generalized ternary functional equations 
of the length three. If they are parastrophically primarily equivalent, then there 
exists a bijection   in 3S  and bijections   1 2 3, , in 4S such that for an arbitrary 

solution 1 2 3( , , )f f f  of     the sequence 

   
  

1 2 3
1 2 3( , ,  )f f f   (11) 

is a solution of the equation     . 
In this case,    1 2 3( , , , )  is called a defining bijection system of the 

equations     and     . 
Theorem 5. [3] Every generalized quadratic ternary quasigroup functional 

equation of the length three is parastrophically primarily equivalent to exactly 
one of the following equations: 

 1 2 3( , , ( , , )) ( , , )F z x F x y y F z u u ,  (12) 

 1 2 3( ( , , ), , ) ( , , )F F x y y z z F x u u ,   (13) 

 1 2 3( ( , , ), , ) ( , , )F F x y z u u F x y z ,   (14) 

 1 2 3( ( , , ), , ) ( , , )F F x y z x u F y z u . (15) 

A functional equation is an identity if all functional variables are 
parastrophic. Each quasigroup identity defines a variety of quasigroups. 
Considering the identity as a functional equation means that the solution of the 
identity is its variety. Two identities are called equivalent, if they define the 
same variety. Two identities are parastrophically equivalent, if they define 
parastrophic varieties. Therefore, if identities are parastrophically primarily 
equivalent, then they are parastrophically equivalent. 

Theorem 6. [3] A triplet 1 2 3( , , )f f f  of ternary invertible operations defined 
on set Q  is a solution of the functional equation (15) if and only if there exist 
binary invertible operations  ,  ,   on Q  such that 

   1( , , ) ( )f y x u x y u ,                                (a)  

   2( , , ) ( )
r

f x y z x y z ,                                (b) (16) 

  3( , , ) ( )f y z u y z u .                                (c)  

4. Functional equations on universal loops. 
A ternary quasigroup is universal if only if its operation is universally 

neutral. It is easy to see that each triplet of universally neutral operations is a 
solution of each of the functional equations (12), (13), (14). The solution of the 
equation (15) is given in the following theorem. 

Theorem 7. A triplet 1 2 3( , , )f f f  of ternary universally neutral invertible 
operations defined on set Q  is a solution of the functional equation (15) if and 

only if 1 3f f  and there exists a binary commutative middle loop ( ; )Q  such 
that 
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 


 1( , , ) ( )f x y u x y u ,                               (a)  

   2( , , ) ( )
r

f x y z x y z .                                (b)  (17) 

P r o o f . Let a triplet 1 2 3( , , )f f f  of ternary universally neutral invertible 
operations defined on set Q  be a solution of the functional equation (15). 
According to Theorem 6 there exist binary invertible operations  , ,   on Q
such that (16) hold. 

Let :x u  in (16, a);  :x y u , :y z  in (16, c) and  :x u z  in (16, c): 

   ( )y x y x ,            ( )y x y x ,             ( )y y x x .   

These identities imply the following equalities: 

    ( ) ( )x y x x y x ,                   ( ) ( )x y x y x x   

which mean that the operation ( ) is commutative and ( )  coincides with ( ) . 

Moreover, the equality  ( )y y x x implies that the operation ( )  equals 

( ) . 

Thus, 1 3f f  and (17) hold. Put :x y  in (17, a): 

 

( )x x u u .  

Consequently, the term x x  is a left neutral element of the operation 

( )

for all x  of Q . Since 

( ; )Q  is a quasigroup, then x x  is a constant, i.e., x x e  

for some element e  from Q . It means that the quasigroup ( ; )Q  is a commu-
tative middle loop. 

Vice versa, let ( ; , )Q e  be a binary commutative middle loop. We have to 

prove that the operations 1f  and 2f defined by (17) are universally neutral, i.e., 
both satisfy the identities (3). Indeed, 

   
 

  1( , , ) ( )f x x u x x u e u u ,   

   
 
  1( , , ) ( ) ( )f x u x x u x u x x u ,  

  


 1( , , ) ( ) .f u x x u x x u   

   2( , , ) ( )
r

f x x z x x z z ,   

      2( , , ) ( ) ( )
r r

f x z x x z x x x z z ,  

     2( , , ) ( )
r r

f z x x z x x z e z .  

5. Quadratic identities. 
A functional equation is called an identity in quasigroups, if all its 

functional variables are pairwise parastrophic. For example, 

      1 2 3 1 4 2 3 4, , , , , ,F F x x x x x F x x x ,  (18) 

where    4, S , is a quadratic identity of the length 3. This identity is said to 

be true in a quasigroup  ;Q f , if the equality  

      1 2 3 1 4 2 3 4, , , , , ,f f x x x x x f x x x ,  (19) 
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is true for all 1 6, ,x x Q  . It is called an identity in the quasigroup  ;Q f . 

                     1,2 2 ,3 , 1 ,4 1 ,2 , 3 ,4 .   (20) 

Theorem 8.  
Let the condition (20) be true. Then (19) is the identity in a ternary univer-

sal loop  ;Q f  if an only if there exists a commutative middle loop  ; ,0Q  such 

that  

    


 , ,f x y z x y z ;  (21) 

Let the condition (20) be false. Then the identity (19) is true in a ternary 
universal loop  ;Q f  if and only if there exists a group  ; ,0Q  of exponent 

two such that  

     , ,f x y z x y z .  

Note, totally symmetric groups are exactly groups of exponent two. 
P r o o f .  The identity (19) is true if universal loop  ;Q f  means that the 

triple   , ,f f f  is a solution of the functional equation (15). Since each para-

strophe of a universal loop is also a universal loop, then according to Theorem 
7, it is equivalent to the existence a binary commutative middle loop  ; ,0Q

such that 

    


 1 2 3 1 2 3, ,f x x x x x x ,   

       1 2 3 1 2 3, ,
r

f x x x x x x ,   

     


 1 2 3 1 2 3, ,f x x x x x x .  

These equalities are equivalent to 

      


 1 2 3 4 1 2 3 4, ,f x x x x x x x x ,             (a)  

        1 2 3 4 1 2 3 4, ,
r

f x x x x x x x x ,            (b) (23) 

       


 1 2 3 4 1 2 3 4, ,f x x x x x x x x .            (c)  

Replace ix  with ix  in (23, b) and ix  with ix  in (23, c) for all  1,2,3, 4i : 

      


 1 2 3 4 1 2 3 4, ,f x x x x x x x x ,  

    
          1 2 3 4 1 2 3 4, ,

r
f x x x x x x x x ,  

    
         


 1 2 3 4 1 2 3 4, ,f x x x x x x x x .  

Using the definition of parastrophes of a ternary invertible operation, we 
obtain 

      


 1 2 3 4 1 2 3 4, ,f x x x x x x x x ,          (a) 

          1 2 3 4 1 2 3 4, ,
r

f x x x x x x x x ,     (b) (24) 
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         


 1 2 3 4 1 2 3 4, ,f x x x x x x x x .        (c)  

Apply (24, a) to (24, b) and (24, c): 

    


 1 2 3 1 2 3, ,f x x x x x x ,  

         


   1 2 3 4 1 2 3 4

r
x x x x x x x x ,  

         
 

   1 2 3 4 1 2 3 4x x x x x x x x .  

By definition of  - and r-parastrophes of binary invertible operations, the 
following relationships are true: 

    


 1 2 3 1 2 3, ,f x x x x x x ,                         (a)  

         1 2 3 4 1 4 2 3x x x x x x x x ,         (b) (25) 

         1 2 3 4 1 2 3 4x x x x x x x x .           (c)  

Thus, the identity (19) is equivalent to the existence of a commutative 
middle loop  ; ,0Q  such that (25) holds. Consider items 1 and 2 of this theorem. 

1. If (19) is true, then (24, b) and (24, c) follow from commutativity of the 
operation   . Therefore, item 1 has been proved. 

2. Let there exist a group  ; ,0Q  of exponent two such that       and 

(22) holds, then (25) can be written as follows 

     1 2 3 1 2 3, ,f x x x x x x ,  

          1 2 3 4 1 4 2 3x x x x x x x x ,  

          1 2 3 4 1 2 3 4x x x x x x x x .  

These relationships are true for all  ,  because the group  ; ,0Q  is 

totally symmetric. Consequently, the identity (19) is true in the universal loop 

 ;Q f . 

Vice versa, let the identity (18) be true in a universal loop  ;Q f . Therefore, 

the relationships (25) are true for some commutative middle loop  ; ,0Q . 

Substitute  


 1 2 3x x x  for 4x  in the right parts of the relationships (25, b) and 

(25, c). Considering on   and  , we obtain eight possible identities: 

    
 

 
 


   1 2 3 4 2 3x x x x x x ,    

 
 

 


   1 1 2 3 2 3x x x x x x , 

   
 

  
 


   1 4 1 2 3 3x x x x x x ,    

 
  

 


   1 4 2 1 2 3x x x x x x , 

    
 

 
 


   1 2 3 2 3 4x x x x x x ,    

 
 

 


   1 1 2 3 3 4x x x x x x , 

   
 

  
 


   1 2 1 2 3 4x x x x x x ,    

 
  

 


   1 2 3 1 2 3x x x x x x . 
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Since (20) is false, then at least one of them satisfies the condition of the 
Theorem 2. Consequently, the commutative middle loop  ; ,0Q  is isotopic to a 

group. By Proposition 1, there exists a group  ; ,0Q  of exponent two and a 

self bijection   of the set Q  such that  0 0  and       x y x y . 

Therefore,      

 1x y x y  and so 

                     


  1, ,f x y z x y z x y z x y z ,  

where          1:x y x y . It is easy to see, that the loop  ; ,0Q  is 

isomorphic to the group  ; ,0Q . Therefore,  ; ,0Q  is a group of exponent 

two and (22) holds. 
P r o o f s  of Theorem 3 and Theorem 4. 
Since each parastrophe of a universal loop is also universal loop and each 

triple of universally neutral functions is a solution of the equations (12), (13), 
(14), then each identity being parastrophically equivalent to the identity of the 
form (12), (13), (14) is true in any universal loop. That is why such identities 
are equivalent and define the subvariety A  of all ternary universal loops in A.  
One of this identities is (5) and so the item 1 of Theorem 4 has been proved. It 
remains to analyze identities of the form (15). 

Let A  denote the variety of universal loops  ;Q f  defined by (21). Let (20) 

be false. Then according to the item 2 of Theorem 8 there is only one variety, 
namely the variety of all boolean skeins. Consequently, all such identities are 
equivalent and (6) is one of them. Thus, the item 2 of Theorem 4 has also been 
proved. 

Let (20) be true. According to Theorem 5 these identities parastrophically 
equivalent to the identity (22). Remember that for parastrophic symmetry orbit 
and parastrophic symmetry group of A  the relationships 

     4Po( ) : SA A ,      3Ps( ) : SA A A ,   

     Po Ps 24A A . (26) 

To determine all varieties being parastrophic to A , we’ll prove the 
following lemma. 

Lemma 2. The parastrophic symmetry group of the variety A  is a dihedral 
subgroup of 4S , namely 

                        4Ps : , 12 , 34 , 12 34 , 13 24 , 1324 , 14 23 , 1423DA . 

4D  is a subgroup of the parastrophic symmetry group Ps( )f  of any universally 

loop  ;Q f  from A . 

P r o o f .  Let   be any element of the parastrophic symmetry group Ps( ).A  

i.e., A = A . By Theorem 8, for any commutative middle loop  ;Q  the  

-parastrophe of the loop  ;Q f  defined by (21) belongs to A . Consequently, 

there exists a commutative middle loop  ;Q  such that 

       


1 2 3 1 2 3, ,f x x x x x x    (27) 

for all 1 2 3, ,x x x Q . In other words, 
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         


1 2 3 4 1 2 3 4, ,f x x x x x x x x .  

Replace ix  with ix  for all  1,2,3, 4i : 

    
           



1 2 3 4 1 2 3 4, ,f x x x x x x x x .  

Using the definitions of parastrophe of ternary and binary quasigroups, we 
obtain 

 ( ( , , ), , ) ( , , )f f x y z u y f z u x .  

Applying (21), we have 

          


 1 2 3 4 1 2 3 4x x x x x x x x .  (28) 

Substitute   


 1 2 3 4x x x x  for 4x  in the right part of the relationship. 

Since      4 1 ,2 ,3 ,4 , then we consider four cases. 

Let  4 1 , then we obtain the identity 

     
 

   
 


 1 2 3 2 3 4x x x x x x .  (29) 

If      1,2 3 ,4 , then by Theorem 2 the loop  ;Q  is isotopic to a group. 

It contradicts to the assumption. Therefore,      1,2 3 ,4  and  2 3  and so 

there are two possible values for  : 

  
 

  
 

1 2 3 4
1423

4 3 1 2
  and     

 
  

 

1 2 3 4
14 23

4 3 2 1
.  (30) 

In both cases the identity (29) is equivalent to 

   

(( ) )x y z z x y , (31) 

i.e., 

   
 

( ) ( )x y z x y z  ,  

which means  f f . By Theorem 8, it is true for all universal loop ( ; )Q f  from 

A , then the bijections (30) belong to Ps( )A  and Ps( )f . 

Let  2 4 , then (28) is equivalent to the identity 

     


 1 1 2 3 3 4( )( )x x x x x x .  (32) 

Theorem 2 implies   {1,2} {3 ,4 }  and  1 3 . Therefore,   has two values: 

      
   

       
   

1 2 3 4 1 2 3 4
13 24 , 1324

3 4 1 2 3 4 2 1
. (33) 

In both cases, the identity (32) is equivalent to (31) and so the permutations 
(33) belong to Ps( )A  and Ps( )f . 

Let  3 4 , then we obtain 

       


1 2 1 2 3 4( )( )x x x x x x . (34) 
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Theorem 2 implies the equality   {1 ,2 } {1,2} . Consequently, there are two 
values for  : 

      
   

       
   

1 2 3 4 1 2 3 4
34 , 12 34

1 2 4 3 2 1 4 3
.  

In both cases (34) imply (31). 
Therefore, these self bigections belong to Ps( )A . 

If  {4 } 4 , then the self bigections   and (12) belong to Ps( )A . 

Since we considered all possible cases, then  4Ps( ) DA . 

By Lemma 2,  f f  for all   4D , then the equality 

   4 4 4 4(13) (23)S D D D   (35)  

implies that it enough to consider (19) when    , { ,(13),(23)} . But (20) is true 
only if   (13)  and    . That is why there is exactly one variety which is 
defined by quadratic identities of the length three satisfying the condition (20) 
and one of these identities is 

 (13)
1 2 3 1 4 2 3 4( ( , , ), , ) ( , , )f f x x x x x x xfx .  

We obtain it from (19) putting   (13)  and    . By definition of para-
strophy of ternary operations 

 3 2 1 1 4 2 3 4( ( , , ), , ) ( , , )f f x x x x x f x x x .  (36)  

Replacing these variables, we get 

 ( ( , , ), , ) ( , , )f f x y z z u f y x u   (37) 

Since  4Ps( ) DA , then Po( )A  consists of  4 4| | / | | 24/8 3S D  varieties. 
The equality (35) implies that 

   (13) (23)Po( ) , , A A A A .  

To find identities which defined the varieties (13)A and (23)A , it is enough 

to respectively replace f  with (13)f  and f  with (23)f  in (36): 

 (13) (13) (13)
3 2 1 1 4 2 3 4( ( , , ), , ) ( , , )f f x x x x x f x x x ,  

 (23) (23) (23)
3 2 1 1 4 2 3 4( ( , , ), , ) ( , , )f f x x x x x f x x x .  

By definition of parastrophy of ternary quasigroups, these identities are 
equivalent to 

 4 1 1 2 3 4 3 2( , , ( , , )) ( , , )f x x f x x x f x x x ,  

 3 1 2 4 1 2 4 3( ( , , ), , ) ( , , ).f f x x x x x f x x x   

Replacing the variables, we obtain 

 ( , , ( , , )) ( , , ),f x y f y z u f x u z   

 ( ( , , ), , ) ( , , )f f x y z u y f z u x .  

Thus, Theorems 3 and 4 have been proved. 
6. Identities of the length one and two. 
In [4] it is proved the following theorem.  
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Theorem 9. Every generalized ternary quasigroup functional equation of the 
length one is parastrophically primarily equivalent to exactly one of the follo-
wing equations: 

 ( , , ) , ( )F x x x x i     ( , , ) . ( )F x y y x ii   

The identity ( )i  is not quadratic, therefore all quadratic identities belong 
to the class ( )ii  and so they can be written as follow 

  ( , , ) ,F x y y x          4 .S   

It is easy to see the truth of the following corollary. 
Corollary 1. Every ternary quasigroup quadratic identity of the length one 

is parastrophically primarily equivalent to at least one of 

 ( , , ) ,F x y y x       ( , , ) ,F y x y x          ( , , ) .F y y x x   

For functional equations of the length two it is proved the following 
theorem in [4]. 

Theorem 10. Every generalized ternary quasigroup functional equation of 
the length two is parastrophically primarily equivalent to exactly one of the 
following equations: 

 1 2( , , ) ( , , ),F x x x F x x x   

 1 2( , , ) ( , , ),F x x x F x y y       1 2( , , ) ( , , ),F x x y F x x y  

 1 2( , , ) ( , , ),F x x x F y y y       1 2( , , ) ( , , ),F x x y F x y y  

 1 2( , , ) ( , , ),F x x y F y z z  (38) 

 1 2( , , ) ( , , ).F x y z F x y z  (39) 

Therefore, the quadratic identities of the length two belong to the class 
(38) or (39). Cosequently, the following statement is true. 

Corollary 2. Every ternary quasigroup quadratic identity of the length two 
is parastrophically primarily equivalent to at least one of 

  ( , , ) ( , , ),F x x y F y z z   

  ( , , ) ( , , ),F x y z F x y z   

where    4, S . 
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ПРО ТЕРНАРНІ КВАЗІГРУПОВІ КВАДРАТИЧНІ ТОТОЖНОСТІ МАЛОЇ ДОВЖИНИ 

 
Доведено, що кожна квадратична тотожність довжин один, два, три парастроф-
но-первинно рівносильна принаймні до однієї із заданих тотожностей. Тотожнос-
ті довжини три були проаналізовані в класі універсальних луп, тобто квазігруп, в 
яких кожен елемент нейтральний. Доведено, що існує п’ять нерівносильних 
тотожностей. Перша тотожність визначає клас усіх універсальних луп, друга – 
многовид булевих мотків (skeins), а інші три тотожності визначають три пара-
строфні многовиди, операції яких – це безповторні композиції бінарних комута-
тивних середніх луп. 

Ключові слова: тернарна квазігрупа, квадратичне рівняння, універсальна лупа, 
квазігрупа Штейнера, тотожність, середня лупа. 

 
1 
Vasyl' Stus Donetsk National University, Vinnytsia Received 

2 Khmelnytskyi National University, Khmelnytsk 02.12.20 
 
 
 
 


