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ON TERNARY QUASIGROUP QUADRATIC IDENTITIES OF THE SMALL
LENGTH

In this article, it has been proved that each quadratic identity of the lengths one,
two, three is parastrophically primarily equivalent to at least one of the given
identities. The identities of the length three have been analyzed in the class of
universal loops, i.e.,, quasigroups in which every element is neutral. It has been
proved that there are five non-equivalent identities. The first identity defines the
class of all universal loops, the second one defines the variety of the boolean skeins
and the other three identities define three parastrophic varieties whose operations
are repetition-free compositions of binary commutative middle loops.

Key words: ternary quasigroup, quadratic equation, universal loop, Steiner quasigroup,
identity, middle loop.

Introduction. This article is the continuation of the articles [3, 4] and all
necessary concepts and results can be found there.

In [3], the quadratic generalized functional equations of the length three
on invertible functions (i.e., quasigroup operations) are studied: general solutions
of each element from the family of pairwise parastrophically primarily non-
equivalent equations have been found; a full proof of the classification theorem
is given.

A quasigroup functional equation, whose functional variables are
parastrophic, is an identity in the variety of quasigroups. A ternary quasigroup
in which each element is neutral, is called universal loop. For example, a ternary
Steiner quasigroup is exactly a totally symmetric universal loop.

In this article, the solutions of all representatives of the classification in the
variety of all universal loops are given (Theorem 7). Using the obtained results,
it is proved that each ternary quasigroup quadratic identity of the length three
is equivalent to exactly one of the given identities (Theorem 3). The first
identity defines the class of all universal loops, the second one defines the
variety of the boolean skeins [2] and the other three identities define three
parastrophic varieties whose operations are repetition-free compositions of
binary commutative middle loops (Theorem 4). The identities of the lengths one
and two are parastrophically primarily equivalent to at least one of the
identities given in Corollaries 1 and 2.

1. Preliminaries.

rr
An algebra(Q;o,0,0) is called a quasigroup if the following identities are
true:

4 ! r r
(Xey)ey =X, (Xoy)oy=X, Xeo(Xey)=y, Xo(Xey)=Yy.
An element O is called left, right, middle neutral for an invertible operation
(o), if the respective identity is true:
Oox=X, Xo0=X, Xox=0.

In this case, the quasigroup (Q;-,0) is a left, right, middle loop respectively.
One can find a more detailed information in [6]. Note, the left parastrophe of a
middle loop is a left loop and its right parastrophe is a right loop.
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A quasigroup is called a group isotope if it is isotopic to a group. If
Xoy=o(X)+a+py), a0=p0=0, Q)

where (Q;+,0) is a group, then the tuple (+,a,B,a) is called a canonical decom-
position defined by 0 of the group isotope (Q;o).

Theorem 1[7]. Each element of a group isotope uniquely defines its canonical
decomposition.

Proposition 1. If a commutative middle loop (Q;,0) is a group isotope, then

its canonical decomposition defined by Ois
Xoy = a(X)+ a(y)

where (Q;+,0) is a group of exponent two, i.e. it is a totally symmetric group.

Proof. Let (Q;-,0) be a commutative middle loop which is a group isotope
and let (1) be its canonical decomposition defined by0. Since the group isotope
is commutative, then o =f. Moreover, 0=0-0=a(0)+a+p(0) =a. The equa-
lity Xex=0 means a(Xx)+ a(x)=0. Replacing a(x) with x, we obtain
X + X =0 which means that the group (Q;+,0) has exponent two.

A length of a subterm is called the quantity of functional symbols in it. An
identity is called quadratic, if in it each variable appears twice.

Theorem 2. [7] Let a quasigroup satisfy a quadratic identity in three
variables satisfying the conditions: the sets of variables of subterms of the length
one has two variables and these sets are pairwise different, the set of variables
of a subterm of the length two has three elements. Then the quasigroup is isotopic
to a group.

An algebra °(*f) =°*f ‘f =f (in brief, (Q;f) is called a ternary quasigroup,
if it satisfies the following identities:

f(19F(x,y,2),y,2) = X, DF(f(x,y,2),y,2) = X,
f(x, @ f(x,y,2),2) =y, @O f(x,y,2),2) =Y, 2
fx,y, CYf(x,y,2)) =z, CHEx,y, f(X,y,2)) = z.

The operation f is called invertible. A ternary quasigroup is a universal
loop, if each element is neutral, i.e,

fly,x,x)=f(xy,x)=f(x,x,y)=y. (3)

A ternary totally symmetric universal loop is called an SQS-skein which is
also called Steiner Ternar idempotent totally symmetric 3-quasigroup, or Steiner
3-quasigroup [1, 2, 8].

A o -parastrophe of an invertible operation f is called an operation °f
defined by

T (Xi51 X061 X35) = Xao 1= F(X, X0, %3) =%y, ©0€S,,

where S, denotes the group of all bijections of the set {1,2,3,4}. Therefore in

general, every invertible operation has 24 parastrophes. Some of them can
coincide. If all parastrophes coincide, the quasigroup is called totally symmetric.
Since parastrophes of a quasigroup satisfy the equalities

°(*f)="f and ‘f-F, @)

then the symmetric group S, defines an action on the set A; of all ternary

invertible operations defined on the same carrier. In particular, the fact implies
that the number of different parastrophes of an invertible operation is a factor
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of 24. More precisely, it is equal to 24/ | Ps(f) |, where Ps(f) denotes a stabilizer
group of f under this action which is called parastrophic symmetry group of
the operation f. Consequently, a totally symmetric quasigroup is a quasigroup

whose parastrophic symmetry group is S, . If the parastrophic symmetry group

of a ternary quasigroup is trivial, then the quasigroup has 24 different para-
strophes and it is called asymmetric.

Thus, a quadratic identity of the length three is an identity whose
individual variables appear twice in it and it has three functional symbols.

For example, all of the identities

F("f(Xx,y,2),%x,u) ="f(y,z,u) where o,1,veS,.

are ternary quadratic identities of the length three.

2. The main result.

Theorem 3. In the variety U of all ternary universally loops, each quadratic
identity of the length three is equivalent to exactly one of the following identities:

f(z,x, f(x,y,y)) = f(z,u,u), (5)

f(x,u, f(y,u,z)) = f(x,y,2), (6)

f(f(x,y,2),z,u) = f(y,x,u), (7

fx,y, fy,z,u)) = f(x,u,2), (8)

f(f(x,y,2),uy) = f(z,u,x). 9)

The identity (6) is equivalent to f(z,X, f(X,y,y)) = f(z,u,u) which is obtai-
ned in [2].

Theorem 4. In the variety of all universal loops U, the identities (5)—(9)
define the following subvarieties:

1. (5) defines the variety U,

2. (6) defines the variety 8 of boolean skeins, i.e., the class of all ternary
quasigroups (Q;f) such that f(x,y,z) = x+y+z for some boolean group (Q;+);

3. (7) the variety A of all ternary quasigroups (Q;f) such that

!
f(X,y,2z) = (X o y)oz for some commutative middle loop (Q;°);
4, (8) defines the variety @ A of all ternary quasigroups(Q;f) such that

a
f(X,y,z) = (zoy)ox for some commutative middle loop (Q;°);
5. (9) defines the variety @3 A of all ternary quasigroups &' = o' such that

l
f(X,y,2z) = (x o z)oy for some commutative middle loop (Q;0).

The obtained varieties are solutions of A. Krapez’s functional equation
F(X,X,y) =y and thus it is a partial solution of his problem.

3. Functional equations.
Let A; be the set of all invertible ternary functions defined on a carrier

Q. The relationships (2) and (4) are true for all functions from A;. In other
words, the following hyperidentities are true over the set Aj:

°(*F) ="'F, 'F =F, WEF(X,Y,2),y,2) = X ;
CHE(x,F(X,Y,2),2) = Y ; CYE(X,y,F(X,Y,2)) =2 ; (10)

F(Xl,XZ,X3) :GF(XlG'XzCF‘X3G)’ (OS] 83.
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The hyperidentities are called primary.

Two quasigroup functional equations are called: equivalent over a set Q if
they have the same solution set over the carrier; equivalent if they are
equivalent over each set.

Definition 1. [5] Two functional equations are called parastrophically
primarily equivalent if one can be obtained from the other in a finite number
of the following steps: 1) replacing the equation sides; 2) renaming the func-
tional variables; 3) renaming the individual variables; 4) applying the hyper-
identities (10).

Lemma l. Let e = and ¢' = o' be generalized ternary functional equations
of the length three. If they are parastrophically primarily equivalent, then there
exists a bijection t in S; and bijections oy,0,,05in S, such that for an arbitrary

solution (f, T, f;) of ¢ =» the sequence
(Glfl‘r’ GZer' CFS1:31) (11)

is a solution of the equation &' = ®'.

In this case, (1,04,0,,05) is called a defining bijection system of the
equations e=m and &' = o'.

Theorem 5. [3] Every generalized quadratic ternary quasigroup functional
equation of the length three is parastrophically primarily equivalent to exactly
one of the following equations:

Rz, X R(X YY) =F(zu,u), (12)
F(R(XY,y),2,2) = K(x,u,u), (13)
F(R(X Y, 2),u,u) = K(X,y,2), (14)
R(R(X Y 2),x,u) =FK(yzu). (15)

A functional equation is an identity if all functional variables are
parastrophic. Each quasigroup identity defines a variety of quasigroups.
Considering the identity as a functional equation means that the solution of the
identity is its variety. Two identities are called equivalent, if they define the
same variety. Two identities are parastrophically equivalent, if they define
parastrophic varieties. Therefore, if identities are parastrophically primarily
equivalent, then they are parastrophically equivalent.

Theorem 6. [3] A triplet (f,f,,f;) of ternary invertible operations defined
on set Q is a solution of the functional equation (15) if and only if there exist
binary invertible operations -, *, ¢ on Q such that

fl(y,X, U) = (Xoy) *Uu, (a)
£(x,y,2) = x 0y 0 2) (b) (16)
£(y,2,U) = (yo2)*u. (©)

4. Functional equations on universal loops.

A ternary quasigroup is universal if only if its operation is universally
neutral. It is easy to see that each triplet of universally neutral operations is a
solution of each of the functional equations (12), (13), (14). The solution of the
equation (15) is given in the following theorem.

Theorem 7. A triplet (f,f,,f;) of ternary universally neutral invertible
operations defined on set Q is a solution of the functional equation (15) if and
only if f; =1, and there exists a binary commutative middle loop (Q;-) such
that
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£y, U) = (X0 y)ou. (a)

£(x,y,2) = Xo(y 0 7). (b) (17)

Proof. Let a triplet (f,f,,f;) of ternary universally neutral invertible
operations defined on set Q be a solution of the functional equation (15).
According to Theorem 6 there exist binary invertible operations -,*,0 on Q

such that (16) hold.
Let x:=u in (16,a); X:=y=u, Y=z in(16,¢c) and x:=u =2z in (16, ¢):

y = (x0y) *x, y=(Xey)*x, y=(yex)*x.
These identities imply the following equalities:
(X0y) *X = (X o y) *X, (Xoy)*X =(yox)*X

which mean that the operation (o)is commutative and(¢) coincides with (o).
l
Moreover, the equality y = (Y ¢ X) * X implies that the operation (*) equals (o).
Thus, f; = f; and (17) hold. Put x =y in (17, a):
l

(Xox)éu=u.

!
Consequently, the term x o x is a left neutral element of the operation (o)

l
for all x of Q. Since (Q;°) is a quasigroup, then x - x isaconstant, ie, xox =¢
for some element e from Q. It means that the quasigroup (Q;c) is a commu-

tative middle loop.
Vice versa, let (Q;o,e) be a binary commutative middle loop. We have to

prove that the operations f; and f,defined by (17) are universally neutral, ie,
both satisfy the identities (3). Indeed,

¢ ¢
f,(X, X, Uu) =(XoX)oU =€oU =U,
(X, u,X) =(XeUu)ox =(UoX)eX =U,
¢

fi(u, X, X) =(UeX)oX =U.

r
f,(X,X,2) = Xo(Xo02) =2,

r r
H,(X,2,X) = Xo(ZoX) =Xo(XoZ) =2,

r r
f,(2,X,X) =Zo(X o X) =zoe =2.

5. Quadratic identities.
A functional equation is called an identity in quasigroups, if all its
functional variables are pairwise parastrophic. For example,

F("F(xl,xz,x3),xl,x4):fF(xz,xs,x‘l), (18)

where o, 1 €S,, is a quadratic identity of the length 3. This identity is said to
be true in a quasigroup (Q;f), if the equality

f("f(xl,xz,XB),xl,x4)=’f(xz,x3,x4), (19)
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is true for all x,,...,Xg € Q . It is called an identity in the quasigroup (Q;f).

{12} e {{20,30},{16, 40}} A {{11,21},{31,41}}. (20)

Theorem 8.
Let the condition (20) be true. Then (19) is the identity in a ternary univer-
sal loop (Q; f) if an only if there exists a commutative middle loop (Q;°,0) such

that

a
f(x,y,2)=(xoy)oz; (21)
Let the condition (20) be false. Then the identity (19) is true in a ternary
universal loop (Q;f) if and only if there exists a group (Q;+,0) of exponent
two such that
f(x,y,z)=x+y+z.
Note, totally symmetric groups are exactly groups of exponent two.
Proof. The identity (19) is true if universal loop (Q;f) means that the
triple (f, °f, Tf) is a solution of the functional equation (15). Since each para-

strophe of a universal loop is also a universal loop, then according to Theorem
7, it is equivalent to the existence a binary commutative middle loop (Q;°,0)
such that

/
F(Xg, X0, X3 ) = (Xg ©Xp) 0 X3,

r

O (X, Xz, X3) = Xy 0(Xp 0 Xg) s
4

Tf(Xl,XZ,X3) :(Xl OXZ)OXS'

These equalities are equivalent to

T (X1, %0, X3) = X4 & (X 0 Xg)0 X3 = Xy, (@)
r
OF (X1, X9, X3) = X4 & Xy 0(Xp 0 Xg) =Xy, (b) (23)
0
(X1, X0 X3) = Xy & (X 0% )0 Xg = Xg. (c)

Replace x; with Xx;, in (23, b) and x; with x;, in (23, c) forall i =1,2,3,4:

a
T (X0 X0,X3) = X4 & (X3 0 Xg) o Xg = Xy,
r
Gf(X10’X20’X30) = X4G = ch O(XZO' ° X30) = X40’
l
Tf(xlr'XZT'X3r) = X4r = (Xlr ° XZ‘E)OXS’C = X4r'

Using the definition of parastrophes of a ternary invertible operation, we
obtain

T (X1, %0, X3) = X4 & (X 0 Xg)0 X3 = Xy, (@)

.
T (X, X0, X3) = X4 & Xy "(ch ° Xsc) = Xgo (b) (24)
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14
f(Xl’X21X3):X4 Q(XlTOXZt)OX&r = Xgq - (C)

Apply (24, a) to (24, b) and (24, c):

14
F(Xg, X0, X3 ) = (Xg ©Xp) 0 X3,
0 r
(X1 0Xp)0Xg = Xy & Xyg0(Xp0 © Xa5) = Xy s
0 l
(X1 9Xg)oXg = X4 & (Xar © Xge )0 X, = Xg.
By definition of /- and r-parastrophes of binary invertible operations, the
following relationships are true:
0

(X, Xp,X3) = (Xq 0%z ) 0 X, (@
Xy o Xy =Xz 0Xy & X5 0 Xy = Xp5 © Xz (b) (25)
Xp 0 Xy = X3 0 Xy = Xqp 0 Ko = Xy © Xy ()

Thus, the identity (19) is equivalent to the existence of a commutative
middle loop (Q;°,0) such that (25) holds. Consider items 1 and 2 of this theorem.

1. If (19) is true, then (24, b) and (24, c) follow from commutativity of the
operation (o). Therefore, item 1 has been proved.

2. Let there exist a group (Q;+,0) of exponent two such that (o) = (+) and
(22) holds, then (25) can be written as follows

T (X0, %5, %3) = Xg +X; + X3,
Xy + Xy =Xz + Xy & Xig + Xy = X5 + X354
X1+X2 :X3+X4 ®X11+X21. :X3T+X4‘E'

These relationships are true for all o, t because the group (Q;+,O) is
totally symmetric. Consequently, the identity (19) is true in the universal loop
(QF).

Vice versa, let the identity (18) be true in a universal loop (Q; ). Therefore,
the relationships (25) are true for some commutative middle loop (Q;e,0).

0
Substitute (x; o x,)oX, for X, in the right parts of the relationships (25, b) and
(25, c). Considering on T and o, we obtain eight possible identities:

¢ ’
[(XlOXZ)OXSJOXMf:X200X3G’ Xlo0[(X1°X2)°X3]:X20°X301
¢ ¢
X5 © Xye = (X1°X2)°X3 ° X35, Xis © Xye = X5 © (X1°X2)°X3 )
¢ ¢
(X1°X2)°X3 © Xor = X3 © Kgqs Xy © (X1°X2)°X3 = X7 © Xy

¢ ¢
Xqp © Xor :[(Xl °X2)°X3J°X4w Xyp 0 Xpp = X3¢ O((Xl °X2)°X3j-
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Since (20) is false, then at least one of them satisfies the condition of the
Theorem 2. Consequently, the commutative middle loop (Q;,0) is isotopic to a

group. By Proposition 1, there exists a group (Q;®,0) of exponent two and a
self bijection o of the set Q such that a0=0 and xoy=o(x)®a(y).

l
Therefore, xoy =a™ (x®a(y)) and so

14
f(x,y,2)=(xey)ez=0"(a(X)®a(y)®a(z))=x+y+2Z,
where x+y:=a'(a(x)®a(y)). It is easy to see, that the loop (Q;+,0) is

isomorphic to the group (Q;®,0). Therefore, (Q;+,0) is a group of exponent

two and (22) holds.

Proofs of Theorem 3 and Theorem 4.

Since each parastrophe of a universal loop is also universal loop and each
triple of universally neutral functions is a solution of the equations (12), (13),
(14), then each identity being parastrophically equivalent to the identity of the
form (12), (13), (14) is true in any universal loop. That is why such identities
are equivalent and define the subvariety A of all ternary universal loops in A.
One of this identities is (5) and so the item 1 of Theorem 4 has been proved. It
remains to analyze identities of the form (15).

Let A denote the variety of universal loops (Q; f) defined by (21). Let (20)
be false. Then according to the item 2 of Theorem 8 there is only one variety,
namely the variety of all boolean skeins. Consequently, all such identities are
equivalent and (6) is one of them. Thus, the item 2 of Theorem 4 has also been
proved.

Let (20) be true. According to Theorem 5 these identities parastrophically
equivalent to the identity (22). Remember that for parastrophic symmetry orbit
and parastrophic symmetry group of A the relationships

Po(A) = {"A |o e 54} , Ps(A) = {c €S; [°A= A},
[Po(A)|-|Ps(A) =24. (26)

To determine all varieties being parastrophic to A, we’ll prove the
following lemma.

Lemma 2. The parastrophic symmetry group of the variety A is a dihedral
subgroup of S, , namely

Ps(A) = D, = {1,(12),(34),(12)(34),(13)(24),(1324),(14)(23),(1423)} .
D, is a subgroup of the parastrophic symmetry group Ps(f) of any universally
loop (Q;f) from A.

Proof. Let v be any element of the parastrophic symmetry group Ps(A).
ie, YA=A. By Theorem 8, for any commutative middle loop (Q;o) the
v-parastrophe of the loop (Q;f) defined by (21) belongs to A. Consequently,

there exists a commutative middle loop (Q;*) such that

4
VE (X1, X0, X3) = (Xg * X5 ) * Xg (27)

for all x;,X,,X; € Q. In other words,
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¢
VE (X, X0, X3) = X4 < (Xg %Xy ) %Xz = Xy

Replace x; with x;, for all i =1,2,3,4:

Vf(XlV’XZV’XSV) = X4v Aad (le *XZV)*X3V = X4v'

Using the definitions of parastrophe of ternary and binary quasigroups, we
obtain

f(f(x,y,2),u,y) = f(z,u,x).
Applying (21), we have

14
(Xl ° X2)0X3 =Xy 2@ Xy ¥ Xy = Xgy ¥ Xy, - (28)

14
Substitute (x; o X;)exs =X, for X, in the right part of the relationship.

Since 4 € {1v,2v,3v,4v}, then we consider four cases.
Let 4 =1v, then we obtain the identity

{
((Xl ° X2)°X3J *Xo, = Xgy * Xy, - (29)

If {1,2} = {3v,4v}, then by Theorem 2 the loop (Q;e) is isotopic to a group.

It contradicts to the assumption. Therefore, {1,2} ={3v,4v} and 2v =3 and so
there are two possible values for v:

234 1423 d1234 14)(23
= an = . 30
4 31 2 ( ) 4 3 21 (14)(23) (30)
In both cases the identity (29) is equivalent to
l
(Xeoy)oz)*z=X=*Yy, (31)

4 l
(x*y)#z=(xoy)oz ,

which means Yf = f. By Theorem 8, it is true for all universal loop (Q;f) from
A, then the bijections (30) belong to Ps(A) and Ps(f).
Let 2v =4, then (28) is equivalent to the identity

Xy * ((Xl ° Xz)ixs) = Xgy * Xyy - (32)
Theorem 2 implies {1,2} = {3v,4v} and 1v = 3. Therefore, v has two values:

1 2 3 4 123 4

{3 41 2J =(13)(24), [3 4 2 J =(1324). (33)

In both cases, the identity (32) is equivalent to (31) and so the permutations
(33) belong to Ps(A) and Ps(f).
Let 3v =4, then we obtain

1A
Xy * Xy = ((X1°X2) ° X3) * Xgy - (34)
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Theorem 2 implies the equality {lv,2v} = {1,2} . Consequently, there are two
values for v:

1234 123 4
[1 2 4 3}(34)’ (2 14 3]:(12)(34)'

In both cases (34) imply (31).
Therefore, these self bigections belong to Ps(A).

If {4v} =4, then the self bigections 1 and (12) belong to Ps(A).
Since we considered all possible cases, then Ps(A) =D,.

By Lemma 2, Yf = f for all veD,, then the equality
S, =D, u(13)D, U (23)D, (35)

implies that it enough to consider (19) when o,t € {1,(13),(23)} . But (20) is true
only if ¢ =(3) and t=1. That is why there is exactly one variety which is

defined by quadratic identities of the length three satisfying the condition (20)
and one of these identities is

f((l3)f(X1,X2,X3),X1|X4) = l1:(X2y)(3,X4).

We obtain it from (19) putting o = (13) and t=1. By definition of para-
strophy of ternary operations

F(F(X3, X5, %), Xq, Xg) = F(X5,X3,%y) . (36)
Replacing these variables, we get
f(f(x,y,2),z,u) = f(y,x,u) (37)
Since Ps(A) =D,, then Po(A) consists of |S, |/ |D, |=24/8 =3 varieties.
The equality (35) implies that
Po(A) = {A, ®IA, <23>A}.

To find identities which defined the varieties @A and @A | it is enough
to respectively replace f with ®f and f with @®f in (36):

(13)1:((13)1:()(3 1 Xoy Xp ), X, Xg) = 13) T(Xy, %5, %y),

(23)f((23)f(X3, Xo, %), Xq,Xg) = (ZS)f(Xz 1 X3, %)

By definition of parastrophy of ternary quasigroups, these identities are
equivalent to

T4 g, F(Xg, %0, %)) = F(X4, %3, %),
F(F(X3, X0, %), X, X1 ) = F(Xa, X4, X3)-
Replacing the variables, we obtain
f(x,y, f(y,z,u)) = f(x,u,2),
f(f(x,y,2),u,y) = f(z,u,Xx).

Thus, Theorems 3 and 4 have been proved.
6. Identities of the length one and two.
In [4] it is proved the following theorem.
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Theorem 9. Every generalized ternary quasigroup functional equation of the
length one is parastrophically primarily equivalent to exactly one of the follo-
wing equations:

FOx,x,xX) =%, (i) Fx,y,y) =% (ii)

The identity (i) is not quadratic, therefore all quadratic identities belong
to the class (ii) and so they can be written as follow

F(X,V,Y) = X, ceSs,.

It is easy to see the truth of the following corollary.
Corollary 1. Every ternary quasigroup quadratic identity of the length one
is parastrophically primarily equivalent to at least one of

Fuy.y)=%,  Fy.xy)=X, F(Y.Y,X) = X.

For functional equations of the length two it is proved the following
theorem in [4].

Theorem 10. Every generalized ternary quasigroup functional equation of
the length two is parastrophically primarily equivalent to exactly one of the
following equations:

F (X, %, X) = F, (X, X, X),

R (XX x) =R(xy.y) F (XX, y) = KR(X x,y),

F (%, x) = FK(y,y,y), F(xy) = R(Xy.y),

F(X,x,y) = K(y,z2,2), (38)

R(xXY,2) = K(X,Y,2). (39)

Therefore, the quadratic identities of the length two belong to the class
(38) or (39). Cosequently, the following statement is true.

Corollary 2. Every ternary quasigroup quadratic identity of the length two
is parastrophically primarily equivalent to at least one of

"F(X, X,Y) = F(y, z,2),
°F(x,Y,2) = F(X,Y,2),

where 1,6 € S,.
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MPO TEPHAPHI KBA3ITPYNOBI KBAOPATUYHI TOTOXHOCTI MANOI OBXWHU

Jlosedeno, wo KoxuCHA KEAOPAMUUHA MOMONCHICMD 008HCUH 00UH, 08a, MPU NAPACMPOPH-
HO-NEPBUHHO PLBHOCUALHA NPUHAUMHT 00 00HIEL 13 3a0anuxr momodchocmeti. TomodxcHoc-
mi 008X#CUHU MPU OYAU NPOAHANIZ08AHT 8 KAACT YHIBEPCAABHUX AYN, MOOMO K8a3i2pYyn, 8
AKUX KONCeH enemeHm Heumpaavhuil. JJogedeno, w0 IiCHYE M'aAMb HEPIBHOCUABHUL
momoxcHocmel. Ilepua momoxcHicMd BUSHAUAE KAAC YCIX YHIBEPCAALHUX AYN, O0PY2a —
MmHo208u0 Oyaesux momxig (SKeins), a thwi mpu momoscrnocmi susHa¥AOMb MPU NAPA-
cmpoPHi MHO208UOU, ONePayli AKUX — ye 0e3n08MOPHI KOMNO3UYLL 6THAPHUX KoMYyma-
MUBHUX CePedHix AYyn.

Katouoei caosa: mepHapHa keasizpyna, xeadpamuune pPiBHAHHA, YHIBEPCALbHA AYNA,
Keasiepyna Llmetinepa, momodxcHicms, cepedrs ayna.
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