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SOLVABLE LIE ALGEBRAS OF DERIVATIONS OF POLYNOMIAL RINGS
IN THREE VARIABLES

Let K be an algebraically closed field of characteristic zero, A = K[X;,X,,X3] the
polynomial ring in three variables and R =K(X;,X,,X;) the field of rational
functions. If L is a subalgebra of the Lie algebra W;(K) of all K -derivations of
A, then RL is a Lie algebra over K and dimgRL will be called the rank of L
over R. We study solvable subalgebras L of W;(K) of rank 3 over R. It is

proved that L is isomorphic to a subalgebra of the general affine Lie algebra
affy(K) if L contains an abelian ideal | of rank 3 over R. If L has an ideal |

with rkgl =2, then L is contained in a subalgebra L of W4 (K) = DergR such

that L is an extension of a subalgebra of aff,(F) by a subalgebra of dimension
£ 2, where F is the field of constants of | in R.

Introduction. Let K be an algebraically closed field of characteristic
zero, A =KI[x;,X,,X;] the polynomial ring in three variables and
R = K(X;,X,,X;) the field of rational functions. Recall that a K-linear
operator D: A® A is called a K-derivation on A if D satisfies the Leibniz’s
rule: D(fg) = D(f)g+ fD(g) for all f,gT A. The Lie algebra W;(K) of all K-
derivations on A is a very interesting mathematical object closely connected
with groups of symmetries of partial differential equations. In case K is the
field of real or comlpex numbers, all finite dimensional subalgebras of W, (K)

and W, (K) were described in works of S. Lie, P. Olver, N. Kamran. The natu-

ral problem of classification of all finite dimensional subalgebras of W;(K)

remains still open. S. Lie [7] began to study such subalgebras, but his
classification even of nilpotent subalgebras is incomplete. U. Amaldi [1, 2]

continued study of subalgebras of W;(K) but his classification is unsatisfac-
tory. Note that the problem of classifying even nilpotent finite-dimensional
subalgebras of W, (K) is wild (i.e. it contains a hopeless problem of classifying
pairs of square matrices up to simultaneous similarity [3]).

We study finite dimensional solvable subalgebras of rank 3 over R of
the Lie algebra W;(K) (nilpotent subalgebras of W;(K) were studied in [10]).
The main results of the paper: it is proved in Theorem 1 that a solvable finite
dimensional subalgebra L of W;(K) possessing an abelian ideal of rank 3
over R is isomorphic to a subalgebra of the general affine Lie algebra
aff;(K). If L has an abelian ideal | of rank 2 over R, then L can be

embedded in a subalgebra L of W3(K)=Der,R such that L is an extension

of a subalgebra of aff,(F) by a subalgebra of dimension £ 2, where F is the
field of constants for the ideal | in the field R.

Notations in the paper are standard. The ground field K is algebraically
closed of characteristic zero. If L is a subalgebra of the Lie algebra W;(K),
then F =F(L) is the field on constants of L in R=K(x;,X,,X3) (we consider
any derivation DT W,;(K) as derivation of R in the natural way:
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D(f/ g) = (D(f)g - fD(g)) 7 g?). If V is an n -dimensional vector space over K
and gl(V) the Lie algebra of all linear operators on V we can consider the
semidirect product gl(V)&aV, where V is considered as an abelian Lie algeb-
ra. The Lie algebra gl(V)&aV will be called the general affine Lie algebra and
denoted by aff (K) (in case K=R the Lie algebra aff,(R) corresponds to
the general affine Lie group GA,(R)).

Subalgebras with an abelian ideal of rank 3 over R.

The next two lemmas contain standard facts about derivations (see for
example, [8]). More information about derivations of polynomial rings can be
found in [9].

Lemma 1 Let D;,D, T W,;(K) and a,bl R. Then

[aD,,bD,] = ab[D;,D,] + ab, (b)D, - bD,(a)D,.

If [D,,D,]=0, then [aD,,bD,] = aD, (b)D, - bD,(a)D,;.
Lemma 2 If Li Wy(K) and F =F(L) the field of constants for L in R,

then FL is a Lie algebra over F. If L is abelian, nilpotent or solvable then so
is FL.

Lemma 3 Let D;,K,D, be a basis of the vector space Ws(K) over the
field R. Then | n=1KerDi =K.

i
Proof. Suppose that | _KerD; * K and let £1 I KerD;, 1 R\K.
Then there exists a transcendence basis {f;,K,f,} of R over K and the
subfield K(f,,K,f,) is isomorphic to the field K(x;,K,x,). The function f
defines the derivation S of the field K(f,K,f,) and this derivation can be
uniquely extended to the derivation S of K(x,K,x,) (we keep the same

notation for the extended derivation). But S=§ ?zlsiDi for some s;1 R and

therefore S(fl):é?zlsiDi(fl):O by the choice of the element f,. This is
impossible because S(f;)=1. The obtained contradiction shows that

n —_—
| _KerD; =K

Corollary 1 If L is an abelian subalgebra of Ws(K) and rkzL =n, then
dlmKL =n.
Proof. Let D,;,K,D,, be a basis of L over R. Then any element DT L is

n

of the form D = é ._SiD; for some s; I R.Since [D;,D]=0= é ?lei (5;)D; we
have that Di(s;)=0,i,j=1,K,n. By Lemma 3, ;T K and D,,K,D, is a
basis of L over K. Thus dimkL =n.

Theorem 1 Let L be a solvable subalgebra of the Lie algebra W;(K). If L
has an abelian ideal | of rank 3 over R, then L is isomorphic to a solvable
subalgebra of the general affine Lie algebra affy(K). In particular
3£dimkL £9.

Proof. Take any basis D,,D,,D; of the ideal | over the field R. Then

any element DT L can be written in the form
D=sD, +s,D, +5;,D;, s 1 R
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Since [D;,D] = D;(s;)D; + D;(s,)D, + D;(s;)D; 1 Iwe have by Lemma 4 that
Di(s;)T K,i,j=1,2,3. So we can correspond to any element DI L the matrix

ay(s) Dils) Dl(53)9
Bp =8D2(51) D,(s;) [)2(53)%T M;(K) (1)

§D.(s) Dylsy) Da(s)s
Denote by S the set of all columns of such matrices By, where D runs over
the subalgebra L. Since Si K2, the three-dimension vector space over K,
we have d =rk,S £3. If d =0, then all columns for all DI L are zero and

therefore s; T K,i=1,2,3 by Lemma 3. This means L =1. So we can assume

that d 3 1.
Case 1. d=1. Then there exists an element DI L\l which can be

written in the form D =s,D, +s,D, +s;D; such that all columns of S are
proportional to the column (Dl(sl),Dz(sl),D3(sl))T (here ¥ denotes the trans-
pose of the row) of the corresponding matrix By. Take any element

(Dl(t),DZ(t),D3(t))TT S. Then there exists g1 K such that

(D1(t), D, (1), Ds(1)" = g(Di(51), D2(51), Ds(s1) -
It follows from the last equality that

Dy(t- o) = D,(t- o5,) = Ds(t- ¢5,) =0.
By Lemma 3 we obtain t- gs; =d for some dl K, ie t=gs +d. The latter
means that for any element D1 L, D=tD, +t,D, +t;D;,t;1 R the corres-
ponding matrix By has the columns (Dl(ti),Dz(ti),D3(ti))T i=1,2,3 with
t, =f(s),degf £1, f T K[t]. Since (Dl(sl),DZ(sl),D3(sl))T is nonzero we can
assume without loss of generality that D;(s;) =1, D,(s;) = 0,, D;(s;) = g; for
some g,, ¢ 1 K. Put

D¢ = Dy, Dye = D, - gDy, D3¢ = Ds - G50
Then Dy(s;) =1, Dy{s;) =0, D3i(s;) =0 and D¢ D, Dy form a basis of 1 over
R. Let D=tD, +t,D,+t;D; be an arbitrary element in L and
t; =gs; +d;,1=1,2,3. Then the map j :L ® affy(K) which is defined by the
rule: j (D;) = X;, ] (5,D;) = X, X; and further by linearity, is an embedding of L
into the Lie algebra aff;(K).

Case 2. d =rkgS =2. Then there exist linearly independent columns on
the set S of the form

(Dy(51), Da(51), Ds(s1)) "+ (Di(52), Dals2), Dasy)) )
(these columns can belong to different matrices By, D1 L). Therefore any

column (Dl(t),DZ(t),D3(t))TT S is a linear combination of columns in (2). One
can easily show that t= f(s;,s,) for some polynomial fI K[u,v], degf £1.
Note that the rank of the matrix

ai(s1) Di(s)o

{D,(5) Dysr) ©)

gD3(51) Ds(s,) g
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is equal to 2. Without loss of generality one can assume that the first and
second rows of this matrix are linearly independent. But then there exist

4.9 1 K such that

(1,0) = g, (D1(51), D1(S5)) + & (D2 (51), D1 (5y)). 4)
Denoting D= gD; +g,D, we have Ds;) =1, Di(s,) =0. Analogously one
can find d;,d,T K such that the element D,,=d,D; +d,D, has properties
Da(s1) =0, Dads;) = 1.

Further, the third row of the matrix (3) is a linear combination of the
first and second rows and therefore (D; - mD; - mD,)(s;) =0,i =1,2. Denoting

Dy =D; - mD; - mD, we obtain Di¢(sj) = dij, i=1,23,j=12. If DT L isan
arbitrary element, then D =tD, +t,D, +t,D; for some t;t, t;1 R. Since
t; = f(s;,s,), degf, £1 we see that L can be embedded in the Lie algebra
aff; (K).

Case 3 rk¢S =3 can be considered analogously.

Subalgebras with abelian ideals of rk £2 over R.

Lemma 4 Let L be a subalgebra of the Lie algebra Wn(K) and | be an
ideal of L. If F=F(l) is the field of constants for | in R, then D(F)i F for
any element DT L.

Proof. Let DI L and ri F be arbitrarily chosen. Then for any D, 1 1

we have D,(r) =0 and therefore

0 = D(Dy(r)) = Dy (D(r)) + [D, Dy ](r).
Since [D,D;]1 I we have [D,D;](r)=0 and consequently D,(D(r))=0. The
latter means that D(r)T F because the element D, was arbitrarily chosen in
the ideal I. Thus D(F)I F.

Theorem 2 Let L be a solvable finite dimensional subalgebra of the Lie
algebra W;(K) with rkgL =3. If L has an ideal I of rank 2 over R and
F =F(L) is the field of constants of | in R, then the Lie algebra L is
contained in the subalgebra L = FI +L of Ws(K) where 1=(RI)C L. The Lie
algebra L is solvable, FI is its ideal of rank 2 over R which is isomorphic to
a subalgebra of aff,(F). The Lie algebra L is an extension of the ideal FI by
a Lie algebra of dimension 1 or 2 over K.

Proof. The intersection 1 = (R C L is an ideal of the Lie algebra L with
rkeL =2 and dim.L/1£2 (see [8]). Let F be the field of constants for | in
R. Since D(F)i F for any D1 L (by Lemma 4), the subalgebra FI of the
algebra Ws(K) is an ideal of the Lie algebra FI + L. One can easily show that
rkRT = 2. By Theorem 1 of the paper [6], the Lie algebra Fl (as a Lie algebra
over the field F) is isomorphic to a subalgebra of the Lie algebra aff,(F).
Since dimyL /1 £2, it holds obviously dim,L +FI/FI £2. Note that the Lie
algebra L+FI is in general case of infinite dimension over K although
dim-F1 £7 (the sum FI+L is not in general a Lie algebra over F but only

over the field K).The proof is complete.
Further notations are taken from Theorem 2. Let I, = KD, be a one-

dimensional ideal of L lying in 1 and KD, +1;, be an ideal of the quotient
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algebra L/ 1, lying in 1/1; (such ideals do exist because L is solvable and
K is algebraically closed). Let KD, +1 be one-dimensional ideal of the Lie

algebra L/1. Then D,.D,,D; are linearly independent over R and form a
basis of RL over R. By the choice of D, and D, there exist |1, K and
g, 1 F such that

[D3,Dy] =110y, [D3,D,] =1 ,D; +g,D.
The next statement gives more detailed description of the Lie algebra
L=FI+L.

Proposition 1 Let L1 W;(K) be a solvable finite dimensional subalgebra
of rank 3 over R with dimL > 6. Under conditions of Theorem 2 either there
exist r,r,1 R with Di(r;)=dj,i,j=1,2 and every element DI FI is of the
form D = f,(r,r,)D, + (1, r,)D,, £ 1 K[t;,,t,], deg f; £1 or there exists ;1 R,
i=1 or i=2 with Di(r;)=d; and every element DT FI is of the form
D =0,()D; +0,(r;)D,, degg; £1. Then Dy(ry) =-14r - g1, D3(p) =-1,r,. If
dimkL 7 1=2, then there exists DI L\ (KD, +1) such that D =r,D, +s,D,,
;T R, Dy(r;) =1, Dy(r;) = D,(r;) =0, Dy(s,) =0, and in this case |, =0,g, =0,
s, =l L+ fl K.

Proof. Repeating considerations from the proof of Theorem 1 one can
find either elements r,r, with D;(rj) =d;;,i,j =1,2 or an element ri R such
that either D,(r) =1, D,(r)=g or D,(r)=d D,(r) =1 using only transforma-

b (s D,(s,)6
1) i 2)+. If d! 0 we can consider

gDZ(Sl) D,(s:) g
elements Dy, =D, - dD;, D;;=D;, and in this case D;(fy =0,D,(r) =1. So we
can assume that either D;(r)=1,D,(r)=0 or D;(r)=0,D,(r)=1 and r is
either r; or r,.

Let us consider the action of elements D; on r;,s;,1=1,2,3,j =2,3.

tions of columns of the matrix By

Since D;(r;) =1 we have D;(D;(r;)) =0 and therefore
D, (D5(1y)) = D3(Dy (1)) - [Dg, DyJ(r) =0- 1,0y (1) = -1 .

It follows from the equalities D,(D5(r))=-1, and D;(-1,n)=-1; that
D,(Dy(r) +1,r,) =0, ie Dy(r)=-1,r +st for some s¢i KerD,. Analogously
the equality

D,(d;(ry)) = D3(D, (1)) - [D5, B,1(1)
implies D5(r;) = - g,r, +s® for some s®# KerD,. Applying D, to both sides of
the obtained equality -1,n +s¢=-g,r, +s® we get -I,=D;(s®. After
applying D, to the same equality we get D,(s§=-g,. But then
s@+1,r, 1 KerD,. Since s@+1,r 1 KerD, we have
s@+1,r, 1 KerD, G KerD, =F. Thus s®=-1r, +v, for some v, 1 F It follows
from the equality -1,r, +s¢=-g, - | ;r; +v; that s¢=-g,r, +v,. Finally we get
Dy(rn) =-1,6-gr, +v;, vy 1 F.
Analogously it follows from the equalities
D,(D5(1,)) = D3(D4(1y)) - [D3,D,](r,) =0- (1,0, +g,D)(r,) = -1,
that Ds(r,) = -1 ,r, +t¢ for some t¢l KerD, and finally
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Dy(r,) =-1,0+v,,v, T F.
Without loss of generality we can change D; by Dy, = D; - v;D; - v,D,. Then
Dy(r) =-111 - 0,1, Da¢r,) =-1,r,. Returning to the old notation we have
Ds(ry) = - 1101 - 921, D5(1) = -1 51,

Let now dimkL/1=2 and D=rD, +sD, +s,D, be any element of
L\(KD; +1). Then
[D,Ds] =[1;D; +5,D; +8,D,,D5] =
= - D5(r3)D; - D5(s;)D; - $1[Dy, D3] - Dy(s,)D; - 5,[D;, D5] =
= - D3(r3)D3 + (- Dy(sy) +1 48 +5,0,)D; + (- Ds(sy) +158,)D,.
It follows from these equalities that D;(r;) =-g where g is taken from the
equality [D,D;] = dD; +D, where D1 1. Analogously the equality
[;D; +5,D, +5,D,,D;] = nD;
for some mi K implies D,(r;) =0,D,(s,) = 0. The equality
[;D; +5,D, +5,D,,D,] = D, + £,D,
for some f,f, 1 F yields Dy(r;) =0. Summarizing we get
Dy (r3) = D,(r3) =0, D;s(r3) =1, Dy(sp) =0. (5)

Since [D,D,] = gD, for some qi K we have

[3D; +5,D; +5,0,,D5] = (I 113 - Dy(s))Dy
and therefore I,r;- Di(s;)=q. Thus Dy(s;)=1I1,r;+0q9l K. Further
[D,D,] = D, + ,D, for some f,%,1 F. Analogously [,D; +5,D, +s,D,,D,] =
= (0, - Dy(s))D; + (1,15 - Dy(s,))D, and therefore

Dy(sy) = 0p15 - F, D,(sp) = 1,05 - £ (6)
But we have

S =ghp- Lh+6,s, =10 - LT +1,
for some f,,f,T F. It was proved early that D;(s;) =1, +qg,ql K, so we
have s, =1 nr, +qr, + f for some £ 1 F. Applying D, to the both sides of
the equality

linr +an +f5 =g,005 - Lf +1 (7
we get g,r; - f, =0. But r,r,,r; are linearly independent over F, so the last
equality yields g, =0. The equality (7) is now of the form

[, +an + 5 =-nf + 1.
Applying D, to the both sides of this equality we get f, =0. Therefore
l,nr; +ar + 5 = 1,. Applying D, to the both sides of the last equality we get
|, +q=0. Since r; ) K we have |, =0 and therefore s, =0. Analogously
we can assume that f, =0 and s, =1,r,r;. So we have

sy =0,s, =1,nn,0,=0,f, =0,1, =0.
These equalities means that

[D;,D,] =0,[D;,D,] =1,D,,D = 1;D; +5,D,,
where s, =1 ,6,15,D;(rj) = d;j, i,j =1,2,3. The proof is complete.
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PO3B'A3HI AIITEBPU I AMPEPEHUIIOBAHDLb KJTELIb MHOIOYJIEHIB BI TPbOX 3MIHHUX

Hexati K — aacebpaiuno samxuene mose xapakmepucmuru nyav, A=K[X, X, %] —
Kinvye muozounenie 6@ mpvox smimnuxr i R=K(X;,X;,X3) — mote payionasvrux
Pymryit. Axwo L — nidanzedpa asceopu JIi Wy (K) eciz K -dugepenyiroeans wimvys A,
mo RL € anzedporo JIi nad K i dimgRL nasusaemves pamecom anceopu L nad R.
Buguaiomwes nidaszedpu L paney 3 nad R aazeopu JIi Wy (K) . Hosedero, wo sxwo L
micmumsb abeseeuti idean | paney 3 mad R, mo L izomopgna nidanzedpi 3azanwvroi
agpinnot aneedpu JIi affy(K). Jxwo L wmae idean 13 rkgl =2, mo L wmicmumucs 6
nidanzeopi L anee6pu \M(K) = DergR, de L — poswupenns Oesxoi nidaneebpu i3

aff,(F) sa donomozoro nidaneebpu posmiprocmi £2, a F — nose xonemanm dasn le R.

PA3PELWIUMbIE ANMFEBPbI U AU®PEPEHLIMPOBAHWUI KONMEL MHOMOYJIEHOB

OT TPEX NEPEMEHHbIX

Myemvy K — aneebpaunecku samxnymoe nose xapaxmepucmurxu nyas, A =KX, Xy, Xs]
— KOABYO MHO2OUAeHO8 om mpex nepemenibir u R =K(X;,X,,X3) — nose payuonasn-
wole Pynryull. Ecau L -nodaazebpa aneedpur Ju Wh(K)ecex K -dugepernyuposarui
rxoavya A, mo RL ssasemes anze6poii Ju nad K u dimgRL nasuesemcsa panzom
aneebpvr L 1ad R. Mccaedyromes nidanze6por L panea 3 nad R anee6por Ju Wy (K).
Hoxasano, wmo ecau L codepocum abeses udean | pamnea 3 nad R, mo L usomoppra
nodaazebpe obwetl agunnoi aneebpvr Ju affy(K). Ecau L codepaicum udean |c
rkgl =2, mo L codepocumeca 6 nodarzebpe L anzeGpot \M(K) =DergR, 20e L —
pacwupenue Hexomopot mnodanzeopv. uz aAff,(F) ¢ nomowwio nodanzedpvr pasmep-
nocmu £2,a F — noae xonemanm dasn e R.
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