Ie. Yu. Chapovskyi, D. I. Efimov, A. P. Petravchuk

SOLVABLE LIE ALGEBRAS OF DERIVATIONS OF POLYNOMIAL RINGS IN THREE VARIABLES

Let **K** be an algebraically closed field of characteristic zero, $A = \mathbf{K}[x_1, x_2, x_3]$ the polynomial ring in three variables and $R = \mathbf{K}(x_1, x_2, x_3)$ the field of rational functions. If L is a subalgebra of the Lie algebra $W_3(\mathbf{K})$ of all \mathbf{K} -derivations of A, then RL is a Lie algebra over \mathbf{K} and $\dim_R RL$ will be called the rank of L over R. We study solvable subalgebras L of $W_3(\mathbf{K})$ of rank 3 over R. It is proved that L is isomorphic to a subalgebra of the general affine Lie algebra $aff_3(\mathbf{K})$ if L contains an abelian ideal I of rank 3 over R. If L has an ideal I with $rk_R I = 2$, then L is contained in a subalgebra \overline{L} of $W_3(\mathbf{K}) = Der_{\mathbf{K}}R$ such that \overline{L} is an extension of a subalgebra of $aff_2(F)$ by a subalgebra of dimension ≤ 2 , where F is the field of constants of I in R.

Introduction. Let **K** be an algebraically closed field of characteristic $A = \mathbf{K}[x_1, x_2, x_3]$ the polynomial ring in three variables $R = \mathbf{K}(x_1, x_2, x_3)$ the field of rational functions. Recall that a **K**-linear operator $D: A \to A$ is called a **K**-derivation on A if D satisfies the Leibniz's rule: D(fg) = D(f)g + fD(g) for all $f, g \in A$. The Lie algebra $W_3(\mathbf{K})$ of all \mathbf{K} derivations on A is a very interesting mathematical object closely connected with groups of symmetries of partial differential equations. In case K is the field of real or complex numbers, all finite dimensional subalgebras of $W_1(\mathbf{K})$ and $W_2(\mathbf{K})$ were described in works of S. Lie, P. Olver, N. Kamran. The natural problem of classification of all finite dimensional subalgebras of $W_i(\mathbf{K})$ remains still open. S. Lie [7] began to study such subalgebras, but his classification even of nilpotent subalgebras is incomplete. U. Amaldi [1, 2] continued study of subalgebras of $W_3(\mathbf{K})$ but his classification is unsatisfactory. Note that the problem of classifying even nilpotent finite-dimensional subalgebras of $W_4(\mathbf{K})$ is wild (i.e. it contains a hopeless problem of classifying pairs of square matrices up to simultaneous similarity [3]).

We study finite dimensional solvable subalgebras of rank 3 over R of the Lie algebra $W_3(\mathbf{K})$ (nilpotent subalgebras of $W_3(\mathbf{K})$ were studied in [10]). The main results of the paper: it is proved in Theorem 1 that a solvable finite dimensional subalgebra L of $W_3(\mathbf{K})$ possessing an abelian ideal of rank 3 over R is isomorphic to a subalgebra of the general affine Lie algebra $aff_3(\mathbf{K})$. If L has an abelian ideal I of rank 2 over R, then L can be embedded in a subalgebra \overline{L} of $W_3(\mathbf{K}) = Der_{\mathbf{K}}R$ such that \overline{L} is an extension of a subalgebra of $aff_2(F)$ by a subalgebra of dimension ≤ 2 , where F is the field of constants for the ideal I in the field R.

Notations in the paper are standard. The ground field **K** is algebraically closed of characteristic zero. If L is a subalgebra of the Lie algebra $W_3(\mathbf{K})$, then F = F(L) is the field on constants of L in $R = \mathbf{K}(x_1, x_2, x_3)$ (we consider any derivation $D \in W_3(\mathbf{K})$ as derivation of R in the natural way:

 $D(f/g) = (D(f)g - fD(g))/g^2$). If V is an n-dimensional vector space over \mathbf{K} and $\mathbf{gl}(V)$ the Lie algebra of all linear operators on V we can consider the semidirect product $\mathbf{gl}(V) \neq V$, where V is considered as an abelian Lie algebra. The Lie algebra $\mathbf{gl}(V) \neq V$ will be called the general affine Lie algebra and denoted by $aff_n(\mathbf{K})$ (in case $\mathbf{K} = \mathbf{R}$ the Lie algebra $aff_n(\mathbf{R})$ corresponds to the general affine Lie group $GA_n(\mathbf{R})$).

Subalgebras with an abelian ideal of rank 3 over R.

The next two lemmas contain standard facts about derivations (see for example, [8]). More information about derivations of polynomial rings can be found in [9].

Lemma 1 Let $D_1, D_2 \in W_3(\mathbf{K})$ and $a, b \in R$. Then

 $[aD_1, bD_2] = ab[D_1, D_2] + aD_1(b)D_2 - bD_2(a)D_1.$

If $[D_1, D_2] = 0$, then $[aD_1, bD_2] = aD_1(b)D_2 - bD_2(a)D_1$.

Lemma 2 If $L \subseteq W_3(\mathbf{K})$ and F = F(L) the field of constants for L in R, then FL is a Lie algebra over F. If L is abelian, nilpotent or solvable then so is FL.

Lemma 3 Let D_1 , \mathbf{K} , D_n be a basis of the vector space $\Psi_3(\mathbf{K})$ over the field R. Then $\prod_{i=1}^n Ker D_i = \mathbf{K}$.

Proof. Suppose that $\mathbf{I}_{i=1}^n KerD_i \neq \mathbf{K}$ and let $f_1 \in \mathbf{I}_{i=1}^n KerD_i$, $f_1 \in R \setminus \mathbf{K}$. Then there exists a transcendence basis $\{f_1, \mathbf{K}, f_n\}$ of R over \mathbf{K} and the subfield $\mathbf{K}(f_1, \mathbf{K}, f_n)$ is isomorphic to the field $\mathbf{K}(x_1, \mathbf{K}, x_n)$. The function f_1 defines the derivation S of the field $\mathbf{K}(f_1, \mathbf{K}, f_n)$ and this derivation can be uniquely extended to the derivation S of $\mathbf{K}(x_1, \mathbf{K}, x_n)$ (we keep the same notation for the extended derivation). But $S = \sum_{i=1}^n s_i D_i$ for some $s_i \in R$ and therefore $S(f_1) = \sum_{i=1}^n s_i D_i(f_1) = 0$ by the choice of the element f_1 . This is impossible because $S(f_1) = 1$. The obtained contradiction shows that $\mathbf{I}_{i=1}^n KerD_i = \mathbf{K}$

Corollary 1 If L is an abelian subalgebra of $W_3(\mathbf{K})$ and $rk_RL = n$, then $\dim_{\mathbf{K}} L = n$.

Proof. Let D_1 , \mathbf{K} , D_n be a basis of L over R. Then any element $D \in L$ is of the form $D = \sum_{i=1}^n s_i D_i$ for some $s_i \in R$. Since $[D_i, D] = 0 = \sum_{j=1}^n D_i(s_j) D_j$ we have that $D_i(s_j) = 0$, i, j = 1, \mathbf{K} , n. By Lemma 3, $s_i \in \mathbf{K}$ and D_1 , \mathbf{K} , D_n is a basis of L over \mathbf{K} . Thus $\dim_{\mathbf{K}} L = n$.

Theorem 1 Let L be a solvable subalgebra of the Lie algebra $W_3(\mathbf{K})$. If L has an abelian ideal I of rank 3 over R, then L is isomorphic to a solvable subalgebra of the general affine Lie algebra $aff_3(\mathbf{K})$. In particular $3 \le \dim_{\mathbf{K}} L \le 9$.

Proof. Take any basis D_1, D_2, D_3 of the ideal I over the field R. Then any element $D \in L$ can be written in the form

$$D = S_1 D_1 + S_2 D_2 + S_3 D_3, \quad S_i \in R.$$

Since $[D_i, D] = D_i(s_1)D_1 + D_i(s_2)D_2 + D_i(s_3)D_3 \in I$ we have by Lemma 4 that $D_i(s_i) \in \mathbf{K}$, i, j = 1, 2, 3. So we can correspond to any element $D \in L$ the matrix

$$B_{D} = \begin{pmatrix} D_{1}(s_{1}) & D_{1}(s_{2}) & D_{1}(s_{3}) \\ D_{2}(s_{1}) & D_{2}(s_{2}) & D_{2}(s_{3}) \\ D_{3}(s_{1}) & D_{3}(s_{2}) & D_{3}(s_{3}) \end{pmatrix} \in M_{3}(\mathbf{K})$$

$$(1)$$

Denote by S the set of all columns of such matrices B_D , where D runs over the subalgebra L. Since $S \subseteq \mathbf{K}^3$, the three-dimension vector space over \mathbf{K} , we have $d = rk_{\mathbf{K}}S \leq 3$. If d = 0, then all columns for all $D \in L$ are zero and therefore $s_i \in \mathbf{K}$, i = 1,2,3 by Lemma 3. This means L = I. So we can assume that $d \geq 1$.

<u>Case 1.</u> d=1. Then there exists an element $D \in L \setminus I$ which can be written in the form $D=s_1D_1+s_2D_2+s_3D_3$ such that all columns of S are proportional to the column $(D_1(s_1),D_2(s_1),D_3(s_1))^T$ (here \cdot^T denotes the transpose of the row) of the corresponding matrix B_D . Take any element $(D_1(t),D_2(t),D_3(t))^T \in S$. Then there exists $\gamma \in \mathbf{K}$ such that

$$(D_1(t), D_2(t), D_3(t))^T = \gamma (D_1(s_1), D_2(s_1), D_3(s_1))^T.$$

It follows from the last equality that

$$D_1(t-\gamma s_1) = D_2(t-\gamma s_1) = D_3(t-\gamma s_1) = 0.$$

By Lemma 3 we obtain $t-\gamma s_1=\delta$ for some $\delta\in\mathbf{K}$, i.e. $t=\gamma s_1+\delta$. The latter means that for any element $D\in L$, $D=t_1D_1+t_2D_2+t_3D_3$, $t_i\in R$ the corresponding matrix B_D has the columns $\left(D_1(t_i),D_2(t_i),D_3(t_i)\right)^T$ i=1,2,3 with $t_i=f_i(s)$, $\deg f_i\leq 1$, $f_i\in\mathbf{K}[t]$. Since $\left(D_1(s_1),D_2(s_1),D_3(s_1)\right)^T$ is nonzero we can assume without loss of generality that $D_1(s_1)=1$, $D_2(s_1)=\gamma_2$, $D_3(s_1)=\gamma_3$ for some $\gamma_2,\gamma_3\in\mathbf{K}$. Put

$$D_{1'} = D_1$$
, $D_{2'} = D_2 - \gamma_2 D_1$, $D_{3'} = D_3 - \gamma_3 D_1$.

Then $D_{1'}(s_1)=1$, $D_{2'}(s_1)=0$, $D_{3'}(s_1)=0$ and $D_{1'},D_{2'},D_{3'}$ form a basis of I over R. Let $D=t_1D_1+t_2D_2+t_3D_3$ be an arbitrary element in L and $t_i=\gamma_is_i+\delta_i$, i=1,2,3. Then the map $\varphi:L\to aff_3(\mathbf{K})$ which is defined by the rule: $\varphi(D_i)=x_i$, $\varphi(s_1D_i)=x_1x_i$ and further by linearity, is an embedding of L into the Lie algebra $aff_3(\mathbf{K})$.

<u>Case 2.</u> $d = rk_{\mathbf{K}}S = 2$. Then there exist linearly independent columns on the set S of the form

$$(D_1(s_1), D_2(s_1), D_3(s_1))^T, (D_1(s_2), D_2(s_2), D_3(s_2))^T$$
(2)

(these columns can belong to different matrices B_D , $D \in L$). Therefore any column $(D_1(t), D_2(t), D_3(t))^T \in S$ is a linear combination of columns in (2). One can easily show that $t = f(s_1, s_2)$ for some polynomial $f \in \mathbf{K}[u, v]$, $\deg f \leq 1$. Note that the rank of the matrix

$$\begin{pmatrix}
D_1(s_1) & D_1(s_2) \\
D_2(s_1) & D_2(s_2) \\
D_3(s_1) & D_3(s_2)
\end{pmatrix}$$
(3)

is equal to 2. Without loss of generality one can assume that the first and second rows of this matrix are linearly independent. But then there exist $\gamma_1,\gamma_2\in \mathbf{K}$ such that

$$(1,0) = \gamma_1 \left(D_1(s_1), D_1(s_2) \right) + \gamma_2 \left(D_2(s_1), D_2(s_2) \right). \tag{4}$$

Denoting $D_{1'}=\gamma_1D_1+\gamma_2D_2$ we have $D_{1'}(s_1)=1$, $D_{1'}(s_2)=0$. Analogously one can find $\delta_1,\delta_2\in \mathbf{K}$ such that the element $D_{2'}=\delta_1D_1+\delta_2D_2$ has properties $D_{2'}(s_1)=0$, $D_{2'}(s_2)=1$.

Further, the third row of the matrix (3) is a linear combination of the first and second rows and therefore $(D_3 - \mu_1 D_1 - \mu_2 D_2)(s_i) = 0$, i = 1, 2. Denoting $D_{3'} = D_3 - \mu_1 D_1 - \mu_2 D_2$ we obtain $D_{i'}(s_j) = \delta_{ij}$, i = 1, 2, 3, j = 1, 2. If $D \in L$ is an arbitrary element, then $D = t_1 D_1 + t_2 D_2 + t_3 D_3$ for some $t_1, t_2, t_3 \in R$. Since $t_i = f_i(s_1, s_2)$, $\deg f_i \leq 1$ we see that L can be embedded in the Lie algebra $aff_3(\mathbf{K})$.

Case 3 $rk_{\mathbf{K}}S = 3$ can be considered analogously.

Subalgebras with abelian ideals of $rk \le 2$ over R.

Lemma 4 Let L be a subalgebra of the Lie algebra $mathbb{W}_n(\mathbf{K})$ and I be an ideal of L. If F = F(I) is the field of constants for I in R, then $D(F) \subseteq F$ for any element $D \in L$.

Proof. Let $D \in L$ and $r \in F$ be arbitrarily chosen. Then for any $D_1 \in I$ we have $D_1(r) = 0$ and therefore

$$0 = D(D_1(r)) = D_1(D(r)) + [D_1 D_1](r).$$

Since $[D, D_1] \in I$ we have $[D, D_1](r) = 0$ and consequently $D_1(D(r)) = 0$. The latter means that $D(r) \in F$ because the element D_1 was arbitrarily chosen in the ideal I. Thus $D(F) \subseteq F$.

Theorem 2 Let L be a solvable finite dimensional subalgebra of the Lie algebra $W_3(\mathbf{K})$ with $\mathsf{rk}_R L = 3$. If L has an ideal I of rank 2 over R and F = F(L) is the field of constants of I in R, then the Lie algebra L is contained in the subalgebra $\overline{L} = F\overline{I} + L$ of $\mathfrak{W}_3(\mathbf{K})$ where $\overline{I} = (RI) \cap L$. The Lie algebra \overline{L} is solvable, $F\overline{I}$ is its ideal of rank 2 over R which is isomorphic to a subalgebra of $\mathsf{aff}_2(F)$. The Lie algebra \overline{L} is an extension of the ideal $F\overline{I}$ by a Lie algebra of dimension 1 or 2 over \mathbf{K} .

Proof. The intersection $\bar{I} = (RI) \cap L$ is an ideal of the Lie algebra L with $rk_R\bar{L} = 2$ and $\dim_{\mathbf{K}} L / \bar{I} \le 2$ (see [8]). Let F be the field of constants for I in R. Since $D(F) \subseteq F$ for any $D \in L$ (by Lemma 4), the subalgebra $F\bar{I}$ of the algebra $\#I_3(\mathbf{K})$ is an ideal of the Lie algebra $F\bar{I} + L$. One can easily show that $rk_R\bar{I} = 2$. By Theorem 1 of the paper [6], the Lie algebra $F\bar{I}$ (as a Lie algebra over the field F) is isomorphic to a subalgebra of the Lie algebra $aff_2(F)$. Since $\dim_{\mathbf{K}} L / \bar{I} \le 2$, it holds obviously $\dim_{\mathbf{K}} L + F\bar{I} / F\bar{I} \le 2$. Note that the Lie algebra $L + F\bar{I}$ is in general case of infinite dimension over \mathbf{K} although $\dim_F F\bar{I} \le 7$ (the sum $F\bar{I} + L$ is not in general a Lie algebra over F but only over the field \mathbf{K}). The proof is complete.

Further notations are taken from Theorem 2. Let $I_1 = \mathbf{K}D_1$ be a one-dimensional ideal of L lying in I and $\mathbf{K}D_2 + I_1$ be an ideal of the quotient

algebra L/I_1 lying in I/I_1 (such ideals do exist because L is solvable and \mathbf{K} is algebraically closed). Let $\mathbf{K}D_3+\bar{I}$ be one-dimensional ideal of the Lie algebra L/\bar{I} . Then D_1,D_2,D_3 are linearly independent over R and form a basis of RL over R. By the choice of D_1 and D_2 there exist $\lambda_1,\lambda_2\in K$ and $g_2\in F$ such that

$$[D_3, D_1] = \lambda_1 D_1, [D_3, D_2] = \lambda_2 D_2 + g_2 D_1.$$

The next statement gives more detailed description of the Lie algebra $\overline{L} = F\overline{I} + L$.

Proposition 1 Let $L \subseteq W_3(\mathbf{K})$ be a solvable finite dimensional subalgebra of rank 3 over R with $\dim L > 6$. Under conditions of Theorem 2 either there exist $r_1, r_2 \in R$ with $D_i(r_j) = \delta_{ij}$, i, j = 1, 2 and every element $D \in F\overline{I}$ is of the form $D = f_1(r_1, r_2)D_1 + f_2(r_1, r_2)D_2$, $f_i \in \mathbf{K}[t_1, t_2]$, $\deg f_i \leq 1$ or there exists $r_i \in R$, i = 1 or i = 2 with $D_i(r_j) = \delta_{ij}$ and every element $D \in F\overline{I}$ is of the form $D = g_1(r_i)D_1 + g_2(r_i)D_2$, $\deg g_j \leq 1$. Then $D_3(r_1) = -\lambda_1 r_1 - g_2 r_2$, $D_3(r_2) = -\lambda_2 r_2$. If $\dim_{\mathbf{K}} L / \overline{I} = 2$, then there exists $\overline{D} \in L \setminus (\mathbf{K}D_3 + \overline{I})$ such that $\overline{D} = r_3 D_3 + s_2 D_2$, $r_3 \in R$, $D_3(r_3) = 1$, $D_1(r_3) = D_2(r_3) = 0$, $D_1(s_2) = 0$, and in this case $\lambda_1 = 0$, $g_2 = 0$, $s_2 = \lambda_2 r_2 r_3 + f$, $f \in \mathbf{K}$.

Proof. Repeating considerations from the proof of Theorem 1 one can find either elements r_1, r_2 with $D_i(r_j) = \delta_{ij}, i, j = 1, 2$ or an element $r \in R$ such that either $D_1(r) = 1$, $D_2(r) = \gamma$ or $D_1(r) = \delta$, $D_2(r) = 1$ using only transforma-

tions of columns of the matrix $B_D = \begin{pmatrix} D_1(s_1) & D_1(s_2) \\ D_2(s_1) & D_2(s_2) \end{pmatrix}$. If $\delta \neq 0$ we can consider

elements $D_{2'}=D_2-\delta D_1$, $D_{1'}=D_1$, and in this case $D_{1'}(r_1=0,D_2(r)=1)$. So we can assume that either $D_1(r)=1$, $D_2(r)=0$ or $D_1(r)=0$, $D_2(r)=1$ and r is either r_1 or r_2 .

Let us consider the action of elements D_i on r_i , s_i , i = 1, 2, 3, j = 2, 3.

Since $D_1(r_1) = 1$ we have $D_3(D_1(r_1)) = 0$ and therefore

$$D_1(D_3(r_1)) = D_3(D_1(r_1)) - [D_3, D_1](r_1) = 0 - \lambda_1 D_1(r_1) = -\lambda_1.$$

It follows from the equalities $D_1(D_3(r_1)) = -\lambda_1$ and $D_1(-\lambda_1 r_1) = -\lambda_1$ that $D_1(D_3(r_1) + \lambda_1 r_1) = 0$, i.e. $D_3(r_1) = -\lambda_1 r_1 + s'$ for some $s' \in KerD_1$. Analogously the equality

$$D_2(d_3(r_1)) = D_3(D_2(r_1)) - [D_3, D_2](r_1)$$

implies $D_3(r_1)=-g_2r_2+s''$ for some $s''\in KerD_2$. Applying D_1 to both sides of the obtained equality $-\lambda_1r_1+s'=-g_2r_2+s''$ we get $-\lambda_1=D_1(s'')$. After applying D_2 to the same equality we get $D_2(s')=-g_2$. But then $s''+\lambda_1r_1\in KerD_1$. Since $s''+\lambda_1r_1\in KerD_2$ we have $s''+\lambda_1r_1\in KerD_1\cap KerD_2=F$. Thus $s''=-\lambda_1r_1+v_1$ for some $v_1\in F$ It follows from the equality $-\lambda_1r_1+s'=-g_2-\lambda_1r_1+v_1$ that $s'=-g_2r_2+v_1$. Finally we get

$$D_3(r_1) = -\lambda_1 r_1 - g_2 r_2 + V_1, V_1 \in F.$$

Analogously it follows from the equalities

$$D_2(D_3(r_2)) = D_3(D_2(r_2)) - [D_3, D_2](r_2) = 0 - (\lambda_2 D_2 + g_2 D_1)(r_2) = -\lambda_2$$
 that $D_3(r_2) = -\lambda_2 r_2 + t'$ for some $t' \in KerD_2$ and finally

$$D_3(r_2) = -\lambda_2 r_2 + v_2, v_2 \in F.$$

Without loss of generality we can change D_3 by $D_{3'} = D_3 - v_1D_1 - v_2D_2$. Then $D_{3'}(r_1) = -\lambda_1 r_1 - g_2 r_2$, $D_{3'}(r_2) = -\lambda_2 r_2$. Returning to the old notation we have $D_3(r_1) = -\lambda_1 r_1 - g_2 r_2$, $D_3(r_2) = -\lambda_2 r_2$.

Let now $\dim_{\mathbf{K}} L / \bar{I} = 2$ and $\bar{D} = r_3 D_3 + s_1 D_1 + s_2 D_2$ be any element of $L \setminus (\mathbf{K} D_3 + I)$. Then

$$\begin{aligned} [\overline{D}, D_3] &= [r_3 D_3 + s_1 D_1 + s_2 D_2, D_3] = \\ &= -D_3(r_3) D_3 - D_3(s_1) D_1 - s_1 [D_1, D_3] - D_3(s_2) D_2 - s_2 [D_2, D_3] = \\ &= -D_3(r_3) D_3 + (-D_3(s_1) + \lambda_1 s_1 + s_2 g_2) D_1 + (-D_3(s_2) + \lambda_2 s_2) D_2. \end{aligned}$$

It follows from these equalities that $D_3(r_3)=-\gamma$, where γ is taken from the equality $[\overline{D},D_3]=\gamma D_3+\mathring{D}$, where $\mathring{D}\in\overline{I}$. Analogously the equality

$$[r_3D_3 + s_1D_1 + s_2D_2, D_1] = \mu D_1$$

for some $\mu \in \mathbf{K}$ implies $D_1(r_3) = 0$, $D_1(s_2) = 0$. The equality

$$[r_3D_3 + s_1D_1 + s_2D_2, D_2] = f_1D_1 + f_2D_2$$

for some $f_1, f_2 \in F$ yields $D_3(r_3) = 0$. Summarizing we get

$$D_1(r_3) = D_2(r_3) = 0,$$
 $D_3(r_3) = 1,$ $D_1(s_2) = 0.$ (5)

Since $[\overline{D}, D_1] = \theta D_1$ for some $\theta \in \mathbf{K}$ we have

$$[r_3D_3 + s_1D_1 + s_2D_2, D_3] = (\lambda_1r_3 - D_1(s_1))D_1$$

and therefore $\lambda_1 r_3 - D_1(s_1) = \theta$. Thus $D_1(s_1) = \lambda_1 r_3 + \theta$, $\theta \in \mathbf{K}$. Further $[\overline{D}, D_2] = f_1 D_1 + f_2 D_2$ for some $f_1, f_2 \in F$. Analogously $[r_3 D_3 + s_1 D_1 + s_2 D_2, D_2] = (r_3 g_2 - D_2(s_1))D_1 + (\lambda_2 r_2 - D_2(s_2))D_2$ and therefore

$$D_2(s_1) = g_2 r_3 - f_2, D_2(s_2) = \lambda_2 r_3 - f_2. (6)$$

But we have

$$S_1 = g_2 r_2 r_3 - r_2 f_2 + f_3$$
, $S_2 = \lambda_2 r_2 r_3 - r_2 f_2 + f_4$

for some f_3 , $f_4 \in F$. It was proved early that $D_1(s_1) = \lambda_1 r_3 + \theta$, $\theta \in \mathbf{K}$, so we have $s_1 = \lambda_1 r_1 r_3 + \theta r_1 + f_5$ for some $f_5 \in F$. Applying D_2 to the both sides of the equality

$$\lambda_1 r_1 r_3 + \theta r_1 + f_5 = g_2 r_2 r_3 - r_2 f_2 + f_3 \tag{7}$$

we get $g_2r_3 - f_2 = 0$. But r_1, r_2, r_3 are linearly independent over F, so the last equality yields $g_2 = 0$. The equality (7) is now of the form

$$\lambda_1 r_1 r_3 + \theta r_1 + f_5 = -r_2 f_2 + f_3$$
.

Applying D_2 to the both sides of this equality we get $f_2 = 0$. Therefore $\lambda_1 r_1 r_3 + \theta r_1 + f_5 = f_3$. Applying D_1 to the both sides of the last equality we get $\lambda_1 r_3 + \theta = 0$. Since $r_3 \not\in \mathbf{K}$ we have $\lambda_1 = 0$ and therefore $s_1 = 0$. Analogously we can assume that $f_4 = 0$ and $s_2 = \lambda_2 r_2 r_3$. So we have

$$s_1 = 0$$
, $s_2 = \lambda_2 r_2 r_3$, $g_2 = 0$, $f_2 = 0$, $\lambda_1 = 0$.

These equalities means that

$$[D_3, D_1] = 0, [D_3, D_2] = \lambda_2 D_2, \overline{D} = r_3 D_3 + s_2 D_2,$$

where $s_2 = \lambda_2 r_2 r_3$, $D_i(r_i) = \delta_{ii}$, i, j = 1, 2, 3. The proof is complete.

- Amaldi U. Contributo all determinazione dei gruppi continui finiti dello spazio ordinario I // Giornale Mat. Battaglini Prog. Studi Univ. Ital. – 1901. – 39. – P. 273–316.
- Amaldi U. Contributo all determinazione dei gruppi continui finiti dello spazio ordinario II // Giornale Mat. Battaglini Prog. Studi Univ. Ital. – 1902. – 40. – P. 105–141.
- 3. Bondarenko V. M., Petravchuk. A. P. Wildness of the problem of classifying nilpotent Lie algebras of vector fields in four variables // arXiv: 18.03.09772v1 [math. RA].
- 4. Gonzalez-Lopez A., Kamran N. and Olver P. J. Lie algebras of differential operators in two complex variables // Amer. J. Math. 1992. 114. P. 1163—1185.
- 5. Gonzalez-Lopez Å., Kamran N. and Olver P. J. Lie algebras of vector fields in the real plane // Proc. London Math. Soc. 1992. 64(3), № 2. P. 339–368.
- 6. Klimenko I., Lysenko S., Petravchuk A. Lie algebras of derivations with abelian ideals of maximal rank // Scientific Bulletin of Uzhhorod University, Ser. Mathematics and Informatics. 2017. 31. P. 75—81 (in Ukrainian).
- 7. Lie S. Theorie der Transformationsgruppen. Leipzig, 1888, 1890, 1893. Vol. 1–3.
- 8. *Ie. O. Makedonskyi and Petravchuk A. P.* On nilpotent and solvable Lie algebras of derivations // J. of Algebra. 2014. 401. P. 245–257
- derivations // J. of Algebra. 2014. 401. P. 245—257
 9. Nowicki A. Polynomial Derivations and their Rings of Constants. Torun: Uniwersytet Mikolaja Kopernika, 1994. 176 p.
- Uniwersytet Mikolaja Kopernika, 1994. 176 p.

 10. Petravchuk A. P. On nilpotent Lie algebras of derivations of fraction fields // Algebra and Discrete Math. 2016. 22. P. 118–131

РОЗВ'ЯЗНІ АЛГЕБРИ ЛІ ДИФЕРЕНЦІЮВАНЬ КІЛЕЦЬ МНОГОЧЛЕНІВ ВІД ТРЬОХ ЗМІННИХ

Нехай K — алгебраїчно замкнене поле характеристики нуль, $A = \mathbf{K}[x_1, x_2, x_3]$ — кільце многочленів від трьох змінних і $R = \mathbf{K}(x_1, x_2, x_3)$ — поле раціональних функцій. Якщо L — підалгебра алгебри Лі $W_3(\mathbf{K})$ всіх \mathbf{K} -диференціювань кільця A, то RL є алгеброю Лі над \mathbf{K} і $\dim_R RL$ називається рангом алгебри L над R. Вивчаються підалгебри L рангу 3 над R алгебри Лі $W_3(\mathbf{K})$. Доведено, що якщо L містить абелевий ідеал I рангу 3 над R, то L ізоморфна підалгебрі загальної афінної алгебри Лі $2f_3(\mathbf{K})$. Якщо L має ідеал L $2f_4(\mathbf{K})$ то L міститься в підалгебрі L алгебри $M_3(\mathbf{K})$ — $2f_4(\mathbf{K})$ —

РАЗРЕШИМЫЕ АЛГЕБРЫ ЛИ ДИФФЕРЕНЦИРОВАНИЙ КОЛЕЦ МНОГОЧЛЕНОВ ОТ ТРЕХ ПЕРЕМЕННЫХ

Пусть K — алгебраически замкнутое поле характеристики нуль, $A = \mathbf{K}[x_1, x_2, x_3]$ — кольцо многочленов от трех переменных и $R = \mathbf{K}(x_1, x_2, x_3)$ — поле рациональных функций. Если L -подалгебра алгебры $\mathrm{Ju}\ W_3(\mathbf{K})$ всех \mathbf{K} -диференцирований кольца A, то RL является алгеброй $\mathrm{Ju}\ \mathrm{had}\ \mathbf{K}$ и $\dim_R RL$ називается рангом алгебры L над R. Исследуются підалгебры L ранга 3 над R алгебры $\mathrm{Ju}\ W_3(\mathbf{K})$. Доказано, что если L содержит абелев идеал I ранга 3 над R, то L изоморфна подалгебре общей афинной алгебры $\mathrm{Ju}\ \mathrm{aff}_3(\mathbf{K})$. Если L содержит идеал I с $rk_R I = 2$, то L содержится в подалгебре \overline{L} алгебры $W_3(\mathbf{K}) = \mathrm{Def}_{\mathbf{K}} R$, где \overline{L} — расширение некоторой подалгебры из $\mathrm{aff}_2(F)$ с помощью подалгебры размерности ≤ 2 , а F — поле констант для I в R.

Київ. нац. ун-т ім. Тараса Шевченка, Київ Одержано 11.10.18