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LOCALLY NILPOTENT LIE ALGEBRAS OF DERIVATIONS OF INTEGRAL
DOMAINS

Let K be a field of characteristic zero and A an integral domain over K. The Lie
algebra Derg A of all K- derivations of A carries very important information
about the algebra A. This Lie algebra is embedded into the Lie algebra
RDerg Al Derg R, where R =Frac(A) is the fraction field of A. The rank
rkg L of a subalgebra L of RDerg A is defined as dimension dimg RL. We
prove that every locally nilpotent subalgebra L of RDer, A with rkg L =n has
a series of ideals 0 =L, I LI L,...1 L, =L suchthat rky L; =i and all the
guotient Lie algebras L;,,/L;, i =0,K,n-1, are abelian. We also describe all

maximal (with respect to inclusion) locally nilpotent subalgebras L of the Lie
algebra RDerg A with rkg L =3.

Introduction. Let K be a field of characteristic zero and A an
associative-commutative algebra over K that is an integral domain. The set
of all K -derivations of A forms a Lie algebra Derg A, which carries
important (and often exhaustive) information about the algebra A (see, for
example, [8]). In the case of the formal power series ring A = R[[X{,X,,...,X,]],
the structure of subalgebras of the Lie algebra Der, A is closely connected
with the structure of the symmetry groups of differential equations. Finite-
dimensional subalgebras of the Lie algebra Derg A, where A =K[[X]],
A = K][x,y]] and K is the field of real or complex numbers, are described in
[2—-4].

Each derivation DT Der, A can be uniquely extended to a derivation of
the fraction field R =Frac(A) of A, and if rI R then one can define a
derivation rD:R ® R by setting rD(x) = r xD(x) for all x| R. For the study
of the Lie algebra Derg A, it is convenient to consider a larger Lie algebra
RDerg A. It is an R-linear hull of the set {rD|r1 R,DI Derg A} and
simultaneously a subalgebra (over K) of the Lie algebra Derg R of all
derivations of R. We will denote the Lie algebra RDery A by W(A). For a
subalgebra L of W(A) we define the rank rkgL of L over R as
rkg L =dimg RL. In [5], nilpotent and solvable subalgebras of finite rank of
the Lie algebra W(A) were studied. The structure of nilpotent Lie algebras of
derivations with rank 3 was described in [6]. Nilpotent subalgebras of W(A)
with the center of large rank were characterized in [9].

In this paper, we study locally nilpotent subalgebras L of the Lie algebra
W(A) with rkiz L =n over the fraction field R. In particular, we prove in
Theorem 1 that L contains a series of ideals

O=Lgl LI L.l L,=L
such that rki L; =i and all the quotient Lie algebras L,,, /L; are abelian for
i=01..,n-1 Theorem 2 describes maximal (with respect to inclusion)
locally nilpotent subalgebras of rank 3 of the Lie algebra W(A). Note that
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subalgebras of rank 1 in W(A) are one-dimensional over their field of
constants. Lemma 10 describes the structure of subalgebras of rank 2 from
W(A) obtained in [7]. The Lie algebras u,(K) of triangular derivations of

polynomial rings, which were investigated in [1], may be the reference point
for the study of locally nilpotent Lie algebras of derivations.

We use standard notation. The ground field K is arbitrary of charac-
teristic zero. By R we denote the fraction field of the integral domain A. The
Lie algebra

RDerg A=R(rD|rl R,DI Derg A)
is denoted by W(A). A K-linear hull of elements X;,X,,...,X,, we write by
K (X1, X%y,...,X,). Let L be a subalgebra of W(A). Then the subfield F = F(L)

of the field R that consists of all r1 R with D(r)=0 for all DT L is called
the field of constants for L. The rank rky L of L over R is defined by

rkg L :=dimg RL, where RL=R(rD |r1 R,DT L). If I is an ideal of L such

that | =RICL, then one can define the rank (over R) of the quotient Lie
algebra L/1 as rkgrL/1:=dimgRL/RI. By u,(K) we denote the Lie

algebra of all triangular derivations of the polynomial ring K[X;,X,,...,X,].
This algebra consists of all derivations of the form
= i T T
D fl(xz,x3,...,xn)ﬂxl f2(x3,x4,...,xn)ﬂx2 +...+ 1, ™
where 1 K[X;.,....,X,], i=12...,n-1, and f, T K. A Lie algebra is called
locally nilpotent if every its finitely generated subalgebra is nilpotent. The Lie
algebra u,(K) is locally nilpotent but not nilpotent. It contains a series of
ideals 0=1,1 I, T ...1 I, =u,(K) with abelian factors and rkg I, =s for all
$s=0,1,...,n (see [1]). Let V be a vector space over K (not necessary finite
dimensional) and T a linear operator on V. The operator T is called locally
nilpotent if for each vI V there exists a number n=n(v)3 1 such that
T"(v) =0.

On series of ideals in locally nilpotent Lie algebras of derivations. Some
auxiliary results are presented in the following lemmas.

Lemma 1. [5, Lemma 1] Let D;,D,T W(A) and a,bT R. Then

[aD,,bD,] = ab[D,, D,] + ab, (b)D, - bD,(a)D;.

As we mentioned above, the set RL is an R-linear hull of elements rD
for all ri R and DI L. Analogously we define the set FL for the field of
constants F = F(L).

Lemma 2. Let L be a subalgebra of the Lie algebra W(A) and F the
field of constants for L. Then:

1. [5, Lemma 2] FL and RL are K-subalgebras of the Lie algebra
W(A). Moreover, FL is a Lie algebra over F, and if L is abelian, nilpotent or
solvable, then FL has the same property respectively.

2. [5, Lemma 4] If | is an ideal of the Lie algebra L, then the vector
space RI C L over K is also an ideal of L.

3. [5, Theorem 1] If L is a nilpotent subalgebra of W(A) of finite rank
over R, then the Lie algebra FL is finite-dimensional over the field of
constants F.

4. [5, Proposition 1] Let L be a nilpotent subalgebra of W(A). If
rkge L =1, then L is abelian and dimg FL =1. If rkgyL =2 and dim L3 3,
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then there exist D,,D,1T FL and al R such that
FL=F(D,,aD;,...,a“ /KID;,D;), where [D;,D,] =0 and D;(a) =0, D,(a) =1

Lemma 3. [7, Lemmas 5, 8] Let L be a locally nilpotent subalgebra of
rank n over R of the Lie algebra W(A) and F the field of constants for L .
Then

1. The Lie algebra FL over F is locally nilpotent and rky FL =n.

2. If the derived Lie algebra L¢=][L,L] is of rank k over R, then
M =RL¢C L is an ideal of L such that rky M =rkg L¢ and FL/FM is an
abelian Lie algebra with dimg (FL/FM) =n- k.

Lemma 4. [5, Lemma 5] Let L be a nilpotent subalgebra of rank n>0
over R of the Lie algebra W(A) and F the field of constants for L. Then L
contains a series of ideals 0=1,1 I, 1 ...1 1,1 1, =L such that rkg I, =s
and [Ig, 111 1, forall s=1,...,n. Moreover, dimg(FL/Fl, ) =1.

Lemma 5. Let L be a locally nilpotent subalgebra of the Lie algebra

W(A). Let L, | L, be subalgebras of L such that L, =RL; CL, is an ideal of
L,. If rkg(L,/L;) =1 then L, /L, is an abelian quotient Lie algebra

Proof. Let D +L,; be a nonzero element of L, /L,. Then each element of
L,/L, is of the form rD+L, for some ri R. The elements D and rD
generate a nilpotent subalgebra L; = K(D,rD) of the Lie algebra L since L
is locally nilpotent. Every nilpotent subalgebra of rank 1 over R from W(A) is
abelian (Lemma 2 (4)). Thus L; is an abelian Lie algebra. Then

[D+L,rD+L]=[D,/D]+L, I L,.

Since D, rD are arbitrarily chosen, [L, /L;,L,/L,]i L; and the quotient Lie
algebra L, / L, is abelian.g

Remark 1. Let L be a subalgebra of finite rank over R of the Lie
algebra W(A) and 1 a proper ideal of L such that I=RICL. Then

rkg L >rkg I.

Lemma 6. Let L be a locally nilpotent subalgebra of finite rank over R
of the Lie algebra W(A). Let | be an ideal of L such that | =RIC L. If the
quotient Lie algebra L /1 is nonzero, then rkg(L/ 1)¢<rkg(L/1).

Proof. Suppose to the contrary that there exist a subalgebra L of W(A)

and an ideal | of L that satisfy the conditions of the lemma, and
rkg(L/1¢=rkg(L/1). Then this rank equals n-k, where rkgzL =n,

rks | = k. Choose a basis {51,52,K,5n-k} of (L/1)¢ as the set of vectors over

R. Under our assumptions this basis is also a basis of L/l over R. Each
Dil (L/1)¢is a sum of some commutators from L /1, that is
— 8 i) =), & - .
Di=a [Si.Ti'1=a S, TV1+1, k31 i=12..n-k
j=1 j=1

for some §§i),ﬂi)T L /1. Let us denote by N the subalgebra of L generated

by representatives S{”, T of cosets SOTP j=1..k, i=1..,n-k Since

the Lie algebra L is locally nilpotent, the subalgebra N is nilpotent. Denote
L, =N +1. It is easy to see that
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rkg(Ly /1) =rkg(L /D)¢=n- k=rkg(L /).
This implies the equalities rkg L; =rkg LE=n. Since
L,/I=N+1/1;N/(NCI) is a nilpotent Lie algebra, the center Z(L, /1) is
nonzero. Let wus choose a nonzero D, +I1 Z(L,/1) and denote
J;=RMDO;+1)CL,. Then J; is an ideal of L, by Lemma2 (2). Since
RICL=1 and D,/ 1, we get rkgJ, =k+1. If k+1<n, then we take
nonzero D, +J; T Z(L, /J,) and consider J, =R(D, +J,)CL,. The ideal J, of
L, is of rank k+2 over R and RJ, CL, =J,. By a continuation of these
arguments, we construct a series of ideals
I IS P R Y O B O

of the Lie algebra L, =N+ 1. Since the quotient algebra L, /J, ., is of rank
1 over R and nilpotent, it is easy to see that L, /J,_ ., is abelian (Lemma 5).
Then LgI J, . ;, and thus rk; LEE n- 1. The latter contradicts the equation
rkg L#=n. The obtained contradiction shows that rkg (L / 1)¢< rkg(L/1). 1t

Lemma 7. [7, Lemma 7] Let V be a nonzero vector space over K (not
necessary finite dimensional). Let T, T,,..., T, be pairwise commuting locally
nilpotent operators on V. Then there exists a nonzero v,1 V such that
Ti(Vo) = To(vp) =... = T (vg) = 0.

Lemma 8. Let L be a nonzero locally nilpotent subalgebra of finite rank
over R of the Lie algebra W(A). Let | be a proper ideal of L such that

| =RI C L. Then the center of the quotient Lie algebra L /1 is nonzero.
Proof. Toward the contradiction, suppose the existence of nonzero
subalgebras L1 W(A) with a proper ideal | of L that satisfy the conditions

of the lemma and Z(L/1)=0. It is observed in Remark 1 that rkg I <rkg L.
Let us choose among these Lie algebras a Lie algebra L with the least rank
rkeL/1. Then rkgL/1>1 (otherwise, in view of Lemma 5, the Lie algebra
L /1 is abelian and has the nontrivial center).

Let rkyL =n, rkgl =k Then rkg(L/1)=n- k. The derived subalgebra
(L/Ne¢=L¢+1 of the Lie algebra L /I is of rank less then rkyL/1 by
Lemma 6. Set M =R(L¢+1)CL. By Lemma2 (2) M is an ideal of L, and
rke M =rkg(L¢+ 1) <n. It is easy to verify that rky M/l £rkg M <rkg L /1.
The subalgebra M of L is locally nilpotent and thus Z(M/1)* 0 by our
choice of the Lie algebra L. Obviously, Z(M/1) is a (possibly infinite-
dimensional) vector space over K. Note that the quotient Lie algebra L /M is
abelian and dimg(FL/FM)=n- k by Lemma 3 (2), where F =F(L) is the
field of constants for L.

Choose D,,D,,...,D,_ | L such that the cosets D, +FM, D, +FM, ...,
D,.x +tFM form a basis of the vector space FL/FM over F. Then linear
operators adD;,adD,,...,adD,_, are locally nilpotent on the vector space
Z(M /1) over K. Observe that Z(M /1) is invariant of these linear operators
as a characteristics ideal of the Lie algebra M/ Since
[ad D;,ad D;] = ad[D;, D;] and [Di,Dj]T M, linear operators adD;, adD;
pairwise commute on Z(M /1) for i,j =1,2,...,n- k. By Lemma 7, there exists
a nonzero element Dy +1T M /1 such that

adD;(D, +1) =adD;(Dy)+1 =0+1 foralli=12...,n- k.
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Hence [FD;,D, +1]11 FI for all i=12,...,n- k. Moreover, [M,D, +1]i | and
[FM,D, +1]11 FI. Since FL=FD,+FD,+...+FD, , +FM, we obtain
[FL,D, +1]11 FI. The latter states that D, +11 Z(FL/FI). Therefore, in view
of the condition 1 =RICL, we get D,1 Z(L/1).1u

Corollary 1. (see [7, Theorem 1]). Let L be a nonzero locally nilpotent
subalgebra of finite rank over R of the Lie algebra W(A). Then the center of
the Lie algebra L is nonzero.

Theorem 1. Let L be a locally nilpotent subalgebra of rank n over R of
the Lie algebra W(A). Let F be the field of constants for L. Then

1. L contains a series of ideals

O=Lgl LI .1 L,=L (1)
such that rk; Ly =s and the quotient Lie algebra L /L, , is abelian for all
s=1,2...,n;

2. There exists a basis {D;,K,D,} of L over R such that

L, =(RD, +RD, +...+RD,)C L, [L,DJ]1 Ly, s=12...,n;

3. dimgFL/FL,., =1

Proof. (1)-(2) By Corollary 1, there exists a nonzero D, 1 Z(L). Set
L, =RD, CL.By Lemma 2 (2), L, is an ideal of L of rank 1 over R. Assume
that we have constructed basic elements D,,D,,...,D, ofL over R such that
L, =(RD, +RD, +...+RD,)GC L and [L,D,]i L, for all s=12...,k Let us
construct D,,,. By Lemma 8 the center Z(L /L,) is nontrivial, so there exists
Dyu ¥ Ly such that D, +L, 1T Z(L/L,). Then [L,D,,]i L., and one can
easily see that D,,...,D,, D,,, are linearly independent over R. By Lemma 2
(2), Lyyg =RDy,; CL+L, is an ideal of L/L,. In view of the form of the
ideal L., we get that L., =(RD,; +...+RD, +RD,,;)C L is an ideal of L of
rank k+1 over R. We construct a series of ideals (1) and a basis from the
conditions of the theorem. Moreover, since rkg (Lgy; / Lg) =1 Lemma 5 implies

that the quotient Lie algebras L., /L, are abelian for all s=0,1,...,n- 1.
(3) The proof is analogous to the proof of Lemma 4.1

Locally nilpotent subalgebras of rank 3 of the Lie algebra W(A). In the
following lemma the main results of [6] are collected.

Lemma 9. [6, Lemmas 8, 9] Let L be a nilpotent subalgebra of rank 3
over R of the Lie algebra W(A). Let Z(L) be the center of L and F the
field of constants for L. If dimg FL 3 4, then there exist a,bl R, integers
k31,n30,m?31 and pairwise commuting elements D;,D,,D;1 L such that

the Lie algebra FL is contained in the nilpotent subalgebra L i W(A) of one
of the following types:
1 If rkg Z(L) =2, then
o ) ak ak .
L= FaD3,Dl,aDl,...,W Dl,DZ,aDZ,...,WDZn
where D;(a) =D,(a) =0 and Dj(a) =1.

2. If rkg Z(L) =1, then L is either the same as in (1), or
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t: = FéD;, D, aD,, K, 2 D, {28 D} " 4
- 31 21a 21 'l P2 I|_J| 1 I’J:On
where D;(a) =D,(a) =0 and Dy(a) =1, D;(b) = Ds(b) =0 and D,(b) =1.
In [7], the description of locally nilpotent subalgebras of W(A) of ranks 1
and 2 was given.

Lemma 10. [7, Theorem 2] Let L be a locally nilpotent subalgebra of the
Lie algebra W(A) and F the field of constants for L.

1. If rkgL =1, then L is abelian and dimg FL =1.

2. If rkgL =2, then FL is either nilpotent finite dimensional over F,
or infinite dimensional over F and there exist D;,D,1 L, al R such that

k
FL = &,, Dl,aDl,K,% D, Kfi

where [D;,D,] =0, D;(@) =0, and D,(a) =1.

Theorem 2. Let L be a maximal (with respect to inclusion) locally
nilpotent subalgebra of the Lie algebra W(A) such that rky L =3. Let F be

the field of constants for L. Then FL =L and L is a Lie algebra over F of
one of the following types:
1. L is anilpotent Lie algebra of dimension 3 over F;

i ¥ i ¥ 4 0
2. L=F, (2D} {40, f where D, D, D,T L and ai R such

1
that D;(a) =D,(a) =0, D;(a) =1, and [D;,D;] =0 for all i,j =1,2,3;
3 i ¥ i ¥ o - .

3 L:F®3,{%D2}i:0,{%Dl}i’j:On where D,,D,,D;1 L and abl R
such that D,(a) =D,(a) =0, Ds(a)=1 and D;(b) =Ds(b) =0, D,(b)=1 and
[Di,Dj] =0 forall i,j=1,2,3.

Proof. The Lie algebra FL is locally nilpotent by Lemma 3. Therefore,
the maximality of the subalgebra L1 W(A) implies FL =L . By Corollary 1
Z(L)* 0. If rkg Z(L) =3, then one can easily see that L is abelian. Thus, it

follows from Lemma 2 that L is the abelian Lie algebra of dimension 3 over
F and L is of type (1) from the conditions of the theorem.
Case 1. Let rkg Z(L) =2. Let us choose arbitrary elements D;,D,1 Z(L)

linearly independent over R and set | =(RD, +RD,)C L. Then in view of

Theorem 1, | is an ideal of the Lie algebra L of rank 2 over R and
dimc(FL/FI)=1. It is easy to verify that | is abelian. Indeed, take an

arbitrary D =D, +r,D, 1 I. Then

[D;,DB] = Dy(r,)D, + D, (1,)D, =0, [D,,D] = D,(1;)D; +Dy(r,)D, =0,
whence it follows r,r, | KerD, C KerD,. Therefore, for all D,D¢ | we get
[D,D¢ =0.

Let us take an element D,1 L/I. It was proved above that

FL = FIl + FD,;. Consider a nonabelian finitely generated (over K) subalgebra
M of the Lie algebra L such that D;,D,,D;1 M. Since rkyM =3 and
rkg Z(M) =2, Lemma 9 implies that FM is contained in some subalgebra L,,
of W(A) of the form

Ly = F(D;,Dy,aDy,...,a" / niD;, D,,aD,,...,a" / niD,),
where al R such that Dy(a) =1 and D;(a) =D,(a)=0. Then M is contained
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in the locally nilpotent Lie algebra of the form

L, =F(D;,D;,aDy,...,a" / niDy,...,D,,aD,,...,a" / niDy,...),
where al R is defined by derivations D,,D,,D; up to a summand in F.
Since the subalgebra M is an arbitrarily chosen in L, we have Li L. In

view of the maximality of the Lie algebra L, we get that L =L, and L is of
type (2) from the conditions of the theorem.
Case 2. Let rkgZ(L)=1. If dimgc FL =3, then the Lie algebra L is

nilpotent of dimension 3 over F and L is of type (1) from the conditions of
the theorem. Therefore, further we assume that dimg FL 3 4. Take a nonzero

D, T Z(L). Then 1, =RD, G L is an ideal of the Lie algebra L of rank 1 over
R (by Lemma 2). The center of the quotient Lie algebra L /I, is nontrivial by
Lemma8 and thus, we may choose a nonzero D,+I, 1 Z(L/l)). By
Theorem 1, I, =(RD, +RD,)C L is an ideal of the Lie algebra L, rkgzl, =2,
and dimg FL/Fl, =1. Then for some D;1 FL\FI, we get FL =Fl, +FD;.
Moreover, from the choice of D, it is easy to see that [D;,D,]T I, so
[D;,D,] = ,D; for some r;1 R. In particular, this implies that derivations D,

and D; are commuting on KerD,, i. e.
D;(D,(X)) = D,(D5(x)) for all x1 Ker D;.

Let us show that the ideal FI, is nonabelian. Suppose this is not true and
FIl, is abelian. Since dimgFL?3 4, dimgFl,3 3. Then there exists
D =rD, +1,D,1 Fl, such that at least one of the coefficients r,r, is not in
F. From the obvious equalities

[Dy,D] = Dy(r)D; + Dy (1,)D, =0, [D,, D] = D, (1)D; + Dy(r,)D, =0,
it follows r,r, | KerD; C KerD,.

Since at least one of r,r, not in F, either Dg(r;))* O or Ds(r,)?! O.
Firstly, let D4(r,) * 0. The relation [D;,D,] = ;D; implies that for any integer
m 3 1 it holds

(ad D;)™(D) =R,,,D; + DJ'(r,)D, for some R, T R.
Since the linear operator adD,; is locally nilpotent on L, there exists an
integer k >1 such that

DI?f-l(rz) Lo, Dlef(rz) =0.
Let us denote r, = DX 2(r,). Then D5(r,) * 0 and D3(r,) = 0. Furthermore, it is
easy to verify that D;(rp) =D,(r;) =0. Set a = Dgr?ro)T R\ F. One can easily
checked that D,(a) =D,(a) =0 and D;(a) = 1.

Now let D4(r,)=0. Then r,1 F, so rpi/F and D, T Fl, (because

r,D,T Fl, and DT Fl,). Note that Dy(r;) * 0. Using the relation

(ad D;)™ (D) = DI (r)Dy, m 2 1,
one can show (as in the case r, 1/ F) that there exists al R such that
D,(a) =D,(a) =0 and D4(a) = 1.

Let us prove that Fl, = F[a]D,, where F[a] ={f(a)| f(t)T F[t]}. Consider
the sum L, =L +F[a]D,. Since [l,,F[a]D,] =0 and [D,,F[a]D,] | F[a]D,, L, is
a subalgebra of W(A) and L i L,. From the maximality of L, we get L =L,.
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Hence F[a]D, i Fl,. Conversely, take an arbitrary element rD,1 I,. Then
D,(r) =0 and D,(r) =0 since the ideal FI, is abelian by our assumption. The

operator ad D, acts locally nilpotently on rD;, so D';(r) =0 for some integer
k3 1. One can show (using [7, Lemma 6]) that r is a linear combination over
the field F of elements 1,a,...,a' for some positive integer t. Thus
rD, 1 F[a]D,. Therefore, 1, i F[a]D, and Fl, = F[a]D, .

Since [D;,D,]1 I;, we get that [D;,D,] = f(a)D,; for some f(t)1 F[t]. The
field F is of characteristic zero, so there exists a polynomial g(t)T F[t] such
that g¢t)=f(t). Note that Dy(g(a))=f(a) since Ds(@=1. Set
B, = D, - g@@D; 1 1,. Then [D3,I52] =0, and D, has the same other properties
as the derivation D,. Thus we may assume without loss of generality that
[D;,D,]=0. Then D,T Z(L) and rkgZ(L)=2, which contradicts our
assumption. This means that the ideal FI, of the Lie algebra FL is

nonabelian.
Let us show that L is a Lie algebra of type (3) from the conditions of the
theorem. Consider an arbitrary nonabelian finitely generated subalgebra M of

FI, such that D,,D,1T M (such a subalgebra exists because Fl, is a
nonabelian ideal of L ). Denote by N a subalgebra of L generated by the Lie
algebra M and D;. Then rky N =3 and N is a nonabelian Lie algebra that
contains a nonabelian ideal N, of rank 2 over R such that dimg FN/FN,=1.
By Lemma9, there exist a,bl R such that D;(a)=D,(a)=0, Dy(a)=1,
D;(b) = Ds(b) =0, and D,(b) =1 and FN is contained in the Lie algebra L, of
the form
K 3aipi kM
Ly = FéD3,Dz,aDz,...,%Dz,i%Dl\Z. A
i,j=0
The elements a,bT R are uniquely determined by the derivations D;, D,, D,
up to a summand in F. Thus N is contained in the Lie algebra
jalbl i

k

z a ~

L2:FED3,Dz,aDZ,...,WDZ,...,{i'—j'Dl% n
H i i,j=0

The Lie algebra L, is a locally nilpotent subalgebra of W(A) of rank 3 over
R. Since N is an arbitrarily chosen subalgebra of L, L is contained in L,.
In view of maximality of the Lie algebra L, we obtain L =L,. The proof is
complete.;x

Example 1. Let A =K[X;,X,,X;] and R =K(X;,X,,X;). Then the Lie
algebra L = Ké(lﬁ)%,xzﬁﬂ;,& ﬁﬂgﬁ is abelian, rkg L =3, and L is a maximal

locally nilpotent subalgebra of the Lie algebra W;(K) (see [9, Proposition 1]).
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OB NTOKAINIbHO HUINbMNOTEHTHBLIX ANFEBPAX NMU AU®SEPEHLUMPOBAHUN OBJTACTEWN
LLETOCHOCTHU

Hycmwy K — noae xapaxmepucmuxu noav u A — obaacms yeaocrocmu nad K. Anze-
opa Ju Derg A scex K- dugpepenyuposanuii A necem ouenv eancHyo ungopmayuio

00 anzebpe A. dma anzebpa Ju exaadvieaemes ¢ aneedpy Ju RDerg A i Dery R, 2de
R = Frac(A) — noae uacmuwix nad A. Pane rkg L nodasee6por L uz RDerg A
onpedeasiemes xax pasmeprocms dimg RL. Hoxasano, umo xaxcdas 40xaabHo Huabsno-
menmmuas nodaszed6pa L us RDerg A ¢ paneom rkg L =n codepoicum psad udearos
0=1L, I L1 L,...T1 L, =L maxoi, wmo rkgL; =i u ece gaxmop-arze6pvr Ju
L., /L, i =0,K,n- 1, abenresvi. Taxoce onucanst éce makcumaivhvie (OmHocumeisno
BKAOUEHUS) AOKAABHO HuAbNOMeHmHble nodareedpve L us aneedpor Ju RDerg A, e

rxomopwir kg L =3,

MPO NOKANBbHO HINLMNOTEHTHI ANMFEEPU NI AN®EPEHLIIOBAHb OBNACTEM LINICHOCTI

Hexali K — noae xapaxmepucmuru nyav i A — obaacmsw yinicnoemi nad K. Anze6pa
JIi Derg A escix K- dugpepenyitosans A wnece dyoice sascausy ti@opmayiio npo asze6py
A. s aaze6pa JIi exaadaemucs 6 anze6py Jli RDerg Al Derg R, de R = Frac(A) —
ye noae uacmox nad A. Pane kg L mnidarce6pu L 3 RDerg A susnauaemscs sax
posmipricms dimg RL. Zosedeno, wo rozcna aokaavho niasvnomenwmua nidaszedopa L
3 RDerg A 3 paneom rkz L =N wmicmums psad ideanie O=Loi Lli in L,=L
maxuti, wo kg L; =i @ eci Ppaxmop-anece6pu Ji Li, /L;, i =0,K,n-1 abesesi.
Taxox onucamni 8ci maxcumaivii (3a 8KAIOUCHHAM) AOKAABHO HIABNOMEHMHT Nidanzedpu
L 3 aneeopu JIi RDerg A, 6 axux rkg L =3.
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